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Abstract

New blood vessel formation (angiogenesis) is not only essential for the growth of solid tumors
but there is also emerging evidence that progression of hematological malignancies like multiple
myeloma, acute leukemias, and myeloproliferative neoplasms, also depends on new blood vessel
formation. Anti-angiogenic strategies have become an important therapeutic modality for solid
tumors. Several anti-angiogenic agents targeting angiogenesis-related pathways like monoclonal
antibodies, receptor tyrosine kinase inhibitors, immunomodulatory drugs, and proteasome
inhibitors have been entered clinical trials or have been already approved for the treatment of
hematological malignancies as well and in some instances these pathways have emerged as
promising therapeutic targets. This review summarizes recent advances in the basic
understanding of the role of angiogenesis in hematological malignancies and clinical trials with
novel therapeutic approaches targeting angiogenesis.

Introduction

The hypothesis of tumor angiogenesis in malignancies was raised by Judah Folkman: To grow
over a certain size of a few millimetres in diameter solid tumors need blood supply from
surrounding vessel [ 1]. Up to 2-3 mm® solid tumors can grow without blood vessel supply.
Nutrition and oxygen is provided via diffusion from the surrounding tissue. Above this size,
diffusion becomes insufficient due to the negative surface/volume ratio. Based on a balance
between angiogenic and anti-angiogenic growth factors, a tumor of this size can stay dormant for
a very long time period until the so-called angiogenic switch occurs [ 2]. Tumor blood vessels
are generated by various mechanisms, such as expansion of the host vascular network by
budding of endothelial sprouts (sprouting angiogenesis), cooption of the existing vascular
network, remodeling and expansion of vessels by the insertion of interstitial tissue columns into
the lumen of preexisting vessels (intussusceptive angiogenesis) and homing of endothelial cell
precursors (EPC; CEP) from the bone marrow or peripheral blood into the endothelial lining of

neovessels (vasculogenesis) [ 3].

Tight control of angiogenesis is maintained by a balance of endogenous anti-angiogenic and pro-
angiogenic factors [ 4]. VEGF has a key, rate-limiting role in promoting tumor angiogenesis and

exerts its effects by binding to one of three tyrosine kinase receptors: VEGF receptor-1 (VEGFR-
1; fms-like tyrosine kinase-1, Flt-1), VEGFR-2 (human kinase domain region, KDR/murine fetal



liver kinase-1, Flk-1) and VEGFR-3 (FIt-4). VEGFR-1 (ligands include VEGF-A, -B and
placental growth factor [PIGF]) and VEGFR-2 (ligands include VEGF-A, -C and -D) are
predominantly expressed on vascular endothelial cells, and activation of VEGFR-2 appears to be
both, necessary and sufficient, to mediate VEGF-dependent angiogenesis and induction of
vascular permeability [ 4, 5]. Both receptor tyrosine kinases are expressed in all adult endothelial
cells, except for the brain endothelial cells. VEGFR-1 is also expressed on hematopoietic stem
cells, vascular smooth muscle cells, monocytes, and leukemic cells [ 6, 7], while VEGFR-2 is
expressed on endothelial progenitor cells and megakaryocytes [ 8, 9]. VEGFR-3, largely
restricted to lymphatic endothelial cells, binds the VEGF homologues VEGF-C and VEGF-D
and may play an important role in the regulation of lymphangiogenesis. Thus, VEGF and
VEGEFR represent significant anti-cancer therapy targets, which elegantly bypass potential tumor-
related treatment barriers [ 4].

A further important pathway in angiogenesis is the recently identified Delta-Notch pathway, and
particularly the ligand Delta-like 4 (Dl114), was identified as a new target in tumor angiogenesis [
10]. D114 is highly expressed by vascular endothelial cells and induced by VEGF [ 11]. It
interacts with Notch cell surface receptors to act as a negative feedback inhibitor downstream of
VEGF signaling to restrain the sprouting and branching of new blood vessels [ 10, 12].
Inhibition of DIl4-Notch signaling induces an increase in vessel density but these blood vessels
are abnormal and not perfused [ 13]. Therefore intratumour hypoxia is increased and leads to
induction of transcription of proangiogenic genes regulated by Hypoxia inducible factor-1 (HIF-
1) [ 10, 14]. Disruption of D114 signaling by overexpression or inhibition of D114 may impair
angiogenesis and blockade of DI1l4-Notch signaling results in an increased density of
nonfunctional vasculature and is associated with a reduction in the growth of human tumor
xenografts [ 13, 14]. Further, certain xenografts that are resistant to anti-VEGF therapy are
reported to be sensitive to anti-DI14 and combination treatment with anti-VEGF and anti-D114
has additive inhibitory effects on tumor growth [ 13— 15].

This review summarizes the role of pathological angiogenesis in hematological malignancies
focusing on multiple myelomas (MM), acute leukemias, and myeloproliferative neoplasms
(MPN) and its therapeutic intervention with novel agents within clinical trials or already
approved.

Pathophysiology of angiogenesis in hematological
malignancies

Many studies suggest a role for angiogenesis not only in the pathogenesis of solid tumors but
also in hematological malignancies like acute and chronic leukemia, lymphoma, myelodysplastic
syndromes, myeloproliferative neoplasms, and multiple myeloma [ 16— 21]. We and others
reported an increased microvessel density and VEGF expression in the bone marrow of patients
with myeloproliferative neoplasms and lymphoma [ 17, 20]. Thereby, the extent of angiogenesis
in the bone marrow often correlated with disease burden, progonosis, and treatment outcome [
22,23]. In the neoplastic bone marrow there is an imbalance of the cells, cytokines and growth
factors maintaining physiological angiogenesis in the normal bone marrow. The bone marrow
tumor cells upregulates several factors, including interleukin-6, granulocyte-macrophage colony-
stimulating factor and VEGEF, have autocrine and paracrine effects acting on multiple cell types,
thereby stimulating angiogenesis and leading to increased vascularity [ 7, 24]. The role for
VEGF in hematogical malignancies has been extensively studied since its isolation from the
leukemia cell line HL- 60 in 1989 [ 25]. Apparently, this growth factor is expressed in many
other leukemic cell lines [ 7, 26] and a subset of leukemic cells also expresses VEGFR-2 which
allows VEGF to act as autocrine growth factor in leukemia [ 26, 27]. In addition to that, isolated
blast cells from leukemia patients also produce VEGF [ 26] and the cellular level of VEGF in
acute myeloid leukemia (AML) patients has been identified as independent prognostic risk factor
[ 28]. VEGF from leukemic blasts contributes to disease progression, either as positive regulator



for proliferation and apoptosis protection for the blast itself or by activating the surrounding
stroma cells with subsequent induction of bone marrow angiogenesis.

Regarding the Notch pathway, Notch signals are oncogenic in hematogical malignancies in many
cellular contexts [ 29]. Activating Notch-mutations have been shown to be present in at least
50% of human T-cell acute lymphoblastic leukaemia (T-ALL) cases and have been proved to
play a unifying role in the pathogenesis of T-ALL [ 30]. An important role of Notch has been
proposed in cell survival in several B-cell malignancies such as Hodgkin's disease [ 31, 32] and
in two B-cell non-Hodgkin lymphoma entities, chronic lymphocytic leukaemia (CLL) [ 33— 35]
and in MM [ 36, 37].

Multiple myeloma

MM was the first hematological malignancy, in which increased angiogenesis rate was detected [
21, 38]. MM is characterized by proliferation of malignant plasma cells that accumulate in the
bone marrow and often produce a monoclonal immunoglobulin. New vessel formation in the
bone marrow seems to play an important role in the pathogenesis of MM [ 39, 40]. Increased
bone marrow microvessel density (MVD) in patients with MM appears to be also an important
prognostic factor [ 41]. Malignant plasma cells can secrete various cytokines, including VEGF,
basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF), all known for their
pro-angiogenic activity [ 42]. It has been shown that MM cells are capable of secreting VEGF in
response to Interleukin-6 (IL-6) stimulation; in response to that VEGF stimulation microvascular
endothelial cells and bone marrow stromal cells secrete in turn IL-6, a potent growth factor for
malignant plasma cells, thus closing a paracrine loop [ 43]. Specifically, increased microvessel
density (MVD) in the BM of MM patients has been correlated with disease progression and poor
prognosis [ 21, 23]. Moreover, VEGF also exerts direct effects on MM cell migration,
proliferation, survival, and drug resistance. VEGF triggered effects in MM cells are
predominantly mediated via VEGFR 1 and in endothelial cells, predominantly via VEGF R2 [
44]. Rajkumar et al. showed a gradual increase of bone marrow angiogenesis along the disease
spectrum from monoclonal gammopathy of undetermined significance (MGUS) to smoldering
MM, newly diagnosed MM and relapsed MM [ 45], though the expression levels of VEGF,
bFGF, and their receptors were similar among MGUS, smoldering MM, and newly diagnosed
MM [ 46], rising the hypothesis that MVD increase in plasma cell neoplasias could be rather a
function of chronology.

Acute leukemias

The first demonstration that leukemia progression might be accompanied by an increase of bone
marrow vascularization was provided by Judah Folkman's group [ 47]. In their studies, it was
demonstrated that the bone marrow of acute lymphoblastic leukemia (ALL) patients had
increased blood vessel content, compared to normal counterparts. Moreover, it was also shown
that urine and peripheral blood samples from ALL patients contained elevated levels of pro-
angiogenic growth factors, namely bFGF and VEGF, which correlated with the increase of bone
marrow angiogenesis [ 48]. The existence of an "angiogenesis switch", first proposed for solid
tumors [ 49], was therefore suggested to apply to hematological malignancies as well.
"Angiogenesis switch" in leukemia is documented by increased bone marrow MVD, increased
expression of HIF-1, multiple pro-angiogenic factors (VEGF, bFGF, angiopoietin-2), soluble
VEGFR, and decreased expression of endogenous angiogenesis inhibitors, such as
thrombospondin-1 [ 50, 51].

In a recent study by Norén-Nystrom et al. [ 52] MVD, analyzed on 185 bone marrow biopsies,
was higher in T-ALL compared to B-ALL. In the B-ALL group, cases with t(12;21) were
characterized by a low MVD, while patients with hyperdiploid leukemia showed a high MVD.
Similarly, in previously untreated acute myeloid leukemia (AML), increased levels of plasma
VEGTF correlate with reduced survival and lower remission rates [ 53]. In addition to that,
isolated blast cells from leukemia patients also produce VEGF and the cellular level of VEGF in



AML patients has been identified as independent prognostic risk factor [ 28]. In a reccent study [
54] dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used as a non-
invasive technique to measure bone marrow angiogenesis in AML. DCE-MRI was performed
beforte treatment and on day 7 after induction chemotherapy. Thereby, bone marrow
angiogenesis with remission, rate overall and disease-free survival.

Myeloproliferative neoplasms

The available data on angiogenesis and expression of VEGF and its receptors in the bone
marrow of patients with BCR-ABLI- negative myeloproliferative neoplasms (MPN) suggest that
MVD is increased, especially in primary myelofibrosis (PMF), and that increased angiogenesis
might inversely correlate with survival [ 55— 58]. In a recent study, we found a significantly
increased MVD and VEGF expression in MPN compared to controls especially in cases with
high JAK2-V617F mutant allele burdens [ 17]. The identification of an acquired somatic
mutation in the JAK2 gene, resulting in a valine to phenylalanine substitution at position 617 (
JAK2-V617F ), has provided new insights into the pathogenesis of BCR-ABLI- negative MPN,
being present in most patients with polycythaemia vera (PV) and in about 50% of patients with
essential thrombocythemia (ET) and PMF [ 59, 60]. In another study by Alonci et al. in patients
with MPN, serum levels of VEGF and VEGFR-2 was examined. In MPN, VEGF levels were
higher compared to controls, wheresas VEGFR-2 levels was reduced in ET but not in PV and

PMF [ 61].

Anti-angiogenic therapies in hematological malignancies

Anti-angiogenic therapies are mostly based on inhibiting the binding of VEGF to VEGFR by
neutralizing antibodies to the ligand or to the receptor, soluble receptors, small molecule
inhibitors or are directed against the tyrosine kinase activity of the VEGF receptors (Figure 1).
The first anti-angiogenic agent to be approved in solid tumors was bevacizumab (Avastin™ ,
Genentech), a humanized anti-VEGF monoclonal antibody. Administration of bevacizumab, in
combination with cytotoxic chemotherapy, conferred benefits to patients with metastatic
colorectal cancer, non-squamous, non-small cell lung cancer and metastatic breast cancer [ 62—
64]. Additionally, two small-molecule inhibitors targeting VEGFRs and other kinases, sorafenib
(Nexavar™ , Bayer and Onyx pharmaceuticals) and sunitinib (Sutent™ , Pfizer), have been
approved based on their efficacy in treating renal cell- and hepatocellular carcinoma [ 65, 66]. A
growing list of anti-angiogenics is now available, either in various stages of clinical development
or as components of standard clinical regimens. The major classes of anti-angiogenic therapy
include: (1) direct anti-VEGF acting molecules (anti-VEGF antibodies, VEGF -antisense
nucleotides); (2) immunomodulatory drugs (IMIDs) with antiangiogenic properties; (3) receptor
tyrosine kinase inhibitors, targeting VEGFR signaling as well as receptors of other (pro-
angiogenic) factors; (4) anti-endothelial approach of metronomic therapy and (5) other new
compounds, targeting signaling downstream to pro-angiogenic growth factors, such as
mammalian target of rapamycin (mTOR) inhibitors, histone deacetylases' (HDAC) inhibitors and
proteasome inhibitors. Figure 1

Therapeutic strategies to target the VEGF/VEGF receptor system. VEGF, vascular endothelial
growth factor.

In our review, we will focus on several molecules interfering with the VEGF/VEGFR system,
which already have been approved or are currently evaluated in clinical trials for treatment of
hematological malignancies (Table 1).

Table 1

Selection of clinical trials and approved anti-angiogenic therapies in hematological malignancies



Drug Target Study entities Approved for
Receptor tyrosine
kinase inhibitors
22;52127(315112 nib VEGFR1-3, AML, PMF, MDS,
® PDGFR}, c-Kit CML, DLBCL, MM
SU5416 VEGFR1-2, c-kit, AML, MDS, MM,
(Semaxinib) FIt3 MPN
) VEGFR2-3, B- AML, ALL, MDS,
Sorafemg (Nexavar Raf, Faf-1, CML. CLL. NHL, Advapced renal cell
) carcinoma, HCC
PDGFRf MM ’
VEGFR1-3
. ® o AML, MDS, CLL, Advanced renal cell
Sunitinib (Sutent™ ) PDGFRFOIL;’[S, c-kit, Myeloma, NHL carcinoma, GIST
VEGFR2, PKC,
PRC-412 PDGFR, FIt3, c- AML
(Midostaurin) :
Kit
Cediranib VEGFR1-3,
(Recentin® ) PDGFR@, c-Kit | ~ML,MDS,CLL
Proteasome
inhibitors
Bortezomib 26S proteasome, AML, ALL, MDS,
(Velcade® ) NF-xB CML, NHL, MCL MM, MCL
Anti-VEGF
strategies
. Metastatic colorectal
Bevacizumab VEGEF-A AML, MDS, CLL, cancer, NSCLC, breast

(Avastin® )

Immunomodulatory
drugs

Thalidomide

Lenalidomide
(Revlimid® )

bFGF, VEGF, IL-6

bFGF, VEGF, IL-6

CML, NHL, MM

AML, MDS, MPN,
CLL, NHL, MM

AML, MDS, CLL,
NHL

cancer

MM

MM, 5g- MDS

AML, acute myeloid leukemia; bFGF, basic fibroblast growth factor; DLBCL, diffuse large B-
cell lymphoma; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; GIST,
gastrointestinal stromal tumors; HCC, hepatocellular carcinoma; IL-6, Interleukin-6; NHL, non-
Hodgkin lymphoma; NSCLC, non-small cell lung cancer; MCL, mantle cell lymphoma; MDS,
myelodysplastic syndrome; MM, multiple myeloma; MPN, myeloproliferative neoplasm; PMF,

primary myelofibrosis; VEGF, vascular endothelial growth factor.

Anti-VEGF monoclonal antibodies

Conclusions and future directions

Angiogenic and especially VEGF/VEGFR pathways are involved in the pathophysiology of
hematological malignancies including multiple myeloma, acute and chronic leukemias, MPN and
lymphomas. Although VEGF/VEGFR-related pathways seems to be the most relevant regulators
of neoangiogenesis, vasculogenesis and recruitment of endothelial progenitor cells in such
instances, but other pathways are important too. Further, VEGF/VEGFR interactions can
stimulate proliferation, migration and survival of leukemia/lymphoma cells by autocrinous and



paracrinous loops. Novel agents, targeting VEGF, its receptors, and other angiogenic pathways,
are in various stages of clinical development and investigation in hematological malignancies.
As we know from the the treatment of solid tumors, combination therapies of different anti-
angiogenic molecules with chemotherapy or irradiation increases treatment efficacy. Especially,
as blocking VEGF activity has been shown to sensitize the vasculature and improve the delivery
of cytotoxic drugs to tumor and endothelial cells. However, not all patients treated with anti-
angiogenic therapies benefit from this kind of therapy and in most cases, the effect is transient.
Therefore, there is an urgent need for biomarkers to identify patients likely to benefit from anti-
angiogenic treatments, to select the optimal dose to minimize side effects, and to understand the
mechanisms of resistance. Preclinical models suggest multiple mechanisms involved in acquired
or primary resistance against anti-angiogenic therapies. Finally, also these "targeted therapies"
has side effects profiles which must be considered carefully.
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