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Abstract
The lymphatic vascular system is actively involved in tissue fluid homeostasis, immune surveillance and

fatty acid transport. Pathological conditions can arise from injury to the lymphatics, or they can be

recruited in the context of cancer to facilitate metastasis. Protein tyrosine kinases are central players in

signal transduction networks and regulation of cell behavior. In the lymphatic endothelium, tyrosine

kinases are involved in processes such as the maintenance of existing lymphatic vessels, growth and

maturation of new vessels and modulation of their identity and function. As such, they are attractive

targets for both existing inhibitors and the development of new inhibitors which affect

lymphangiogenesis in pathological states such as cancer. RNAi screening provides an opportunity to

identify the functional role of tyrosine kinases in the lymphatics. This review will discuss the role of

tyrosine kinases in lymphatic biology and the potential use of inhibitors for anti-lymphangiogenic

therapy.

Introduction

A number of human diseases have been linked to abnormal or defective lymphatic vessels [ 1]. While

the theory of anti-angiogenesis therapy has been extensively studied [ 2], the concept of targeting

lymphangiogenesis to gain a therapeutic advantage in human disease is only a recent development [ 1].

Advances in our understanding of the molecular signaling pathways that control lymphatic vessel

formation therefore provide an opportunity to explore the value of inhibiting these processes.

A good example of this is cancer biology, where the spread of tumor cells appears highly dependent on

the vessels of the lymphatic system and the protein factors which drive their growth and differentiation [

3]. As a consequence, therapeutic options which target these cellular pathways may provide a means to

prevent growth or metastasis from the primary tumor. Therapeutics may be either anti-lymphatic

(targeting functions of the existing vessels) and/or anti-lymphangiogenic (targeting the generation of

new lymphatic vessels). An understanding of the key signaling components and cellular processes that

are critical for lymphatic vessel function and growth is essential to enable the rational design of

effective inhibitors.

One family of molecules, the protein tyrosine kinases, are known to be key drivers of angiogenesis [ 4],

and studies have shown they also play a pivotal role in lymphatic biology/lymphangiogenesis [ 5]. In

this review we explore the potential for this family of molecules to be used as targets for anti-

lymphatic/anti-lymphangiogenesis and the ways in which we can gain insight into how these family

members might contribute to key signaling pathways within the lymphatic endothelium.
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The lymphatic system in health and disease

While blood vessels carry oxygenated blood and nutrients to cells within the body, the lymphatic vessels

act to maintain fluid homeostasis by draining excess fluid from the tissues, as well as contributing to

immune surveillance and fatty acid transport. Fluid and cells released by the blood vessels are returned

to the circulation via protein-rich lymph fluid that is drained by blind-ended capillaries in the superficial

dermis. This is fed into the deeper, larger caliber lymphatic collecting vessels via lymph nodes and the

thoracic duct and back to the circulation. All of these vessels have a specialized lining of endothelial

cells. Both blood and lymphatic endothelial cells originate from common developmental precursors.

Yet, it is now clear that the lymphatic endothelial cells differ in their molecular and physiological

behavior to the "classical" blood endothelial cell [ 6, 7].

Similarly, the endothelial cells of small lymphatic capillary vessels are distinct in function and gene

expression from the lymphatic endothelial cells (LEC) that line the major collecting lymphatic vessels [

8]. Interestingly, Baluk et al. recently described the presence of unique cell-cell junctions in lymphatic

vessels [ 9]. They found lymphatic capillaries had discontinuous 'button-like' junctions that would allow

flaps of the vessel to open and allow fluid entry. In contrast, collecting lymphatics had continuous

'zipper' junctions, yet in both vessel types the junctions appeared to have the same molecular

components. How this organisation is achieved is unknown, but it presumably stems from the functional

differences of the lymphatic vessel subtypes.

Florence Sabin's pioneering work of the early 20 century mapped the development of the lymphatic

vasculature by injecting blue dye into pig embryos, allowing the vessels to be visualized [ 10, 11]. This

foundation led to recent discoveries showing that early in embryonic development, lymphatic progenitor

cells migrate away from the cardinal vein [ 12]. The process of developmental lymphangiogenesis

proceeds with vessels sprouting from the lymph sacs formed from the progenitor cells. Many molecular

signals are required to stimulate the correct lymphatic network development and maturation, some of

which are discussed below.

In the context of human disease, both blood and lymphatic vessels play important roles. For example, in

cancer, tumor progression relies on the angiogenic switch, or the induction of new blood vessel growth [

13, 14] for the supply of oxygen required for the tumor to grow. Blood vessels also provide a route for

tumor dissemination to distant sites, via invasion of the bloodstream and homing to organs such as the

brain, lungs, liver and bone [ 15]. Tumor angiogenesis (the growth of new blood vessels in a tumor) is

therefore a valid target for cancer therapeutics. Recent work has shown that the lymphatic network also

plays a central role in the metastasis of cancer, allowing spread to draining lymph nodes [ 16– 18].

Clinically, many carcinomas are commonly seen to metastasize initially via the lymphatic vasculature to

the lymph nodes [ 15], with the lymphatic vessels providing a key initial entry point for metastatic

cancer cells. Numerous studies have shown a significant correlation between levels of the

lymphangiogenic vascular endothelial growth factor C (VEGF-C), lymphatic vessel invasion, lymph

node metastasis and/or overall survival (reviewed in [ 3, 15, 19]). Targeting the induction of tumor

lymphangiogenesis (the generation of new lymphatic vessels within a tumor), and the signaling that

drives functional changes in both new and existing lymphatic vessels (Figure 1 ), may help to prevent a

route for tumor metastasis.

Figure 1
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Different functions of LECs in active lymphatic vessels. This schematic outlines some of the cellular

processes that occur in lymphatic vessels under pathological conditions such as cancer. In this

diagram a tumor (and/or infiltrating immune cells) secretes factors that induce changes in the

lymphatic vasculature. Growth factors binding to the different receptors expressed on the surface of

the LECs may induce sprouting of new lymphatic vessels from existing lymphatic capillaries. The



leading 'tip cell' detects a gradient of growth factors by means of cell surface receptors, and migrates

towards the tumor. Behind the tip cell are the stalk cells, responding to proliferation stimuli. The

formation of a lumen and maturation of the vessel is required to create a functional vessel. Other

aspects of the vessel such as vessel dilation and vessel permeability to fluid and cells may also be

altered. These characteristics may be exaggerated in the context of a tumor, to create the abnormal

vessels often associated with cancer and enhance the ease with which lymphogenous metastasis

occurs. Many of these responses are induced by signaling pathways involving tyrosine kinases.

In addition to cancer, there are a range of pathological conditions associated with defective or abnormal

lymphatic vessels. Lymphedema results from inadequate drainage of fluid from a limb, and can be

primary or acquired. Primary lymphedema is rare, but patients are often found to harbour point

mutations in key lymphatic genes such as vascular endothelial growth factor receptor 3 (VEGFR-3).

Acquired lymphedema can be caused by damage or trauma to the lymphatic vessels (eg sentinel lymph

node biopsy), or infection with the parasitic worms that cause filariasis (elephantiasis). Recent work by

Tammela et al. [ 20] demonstrated that by stimulating the VEGFR-3 tyrosine kinase by treatment with

the lymphangiogenic vascular endothelial growth factors C or D (VEGF-C or VEGF-D) it is possible to

regenerate functional collecting lymphatic vessels in mice following lymph node dissection.

Lymphangioma or lymphangiectasia can result from a build up of fluid, causing an excessive

dilation/distension of the lymphatic vessels that is not resolved. Patients (often children) may present

with a group of skin lesions that discharge milky fluid, or cystic masses of the head, neck or genitals.

Current treatments rely on compression bandages or surgery, although more recently sclerosing agents

have been used with some success to induce fibrous obliteration of the vessel [ 21].

Therefore, understanding the biology of the lymphatics and lymphatic endothelium may provide new

options for the treatment of diseases involving the lymphatics, such as cancer, lymphangioma,

lymphedema and wound healing.

Tyrosine kinases in vascular biology

Current strategies for targeting tyrosine kinases

Therapeutic targeting of PTKs has been approached from a number of angles, with varying success.

Humanized monoclonal antibodies (mAb) raised against the extracellular domains of an RTK have been

used. The first FDA approved PTK inhibitor was trastuzumab, a mAb directed to the HER2/neu RTK [

63, 64] for use against metastatic breast cancer. Since then, several others have made their way into the

clinic; bevacizumab [ 65, 66], and cetuximab [ 67, 68] being the most significant examples.

Monoclonal antibody inhibitors of RTKs act via prevention of receptor dimerization and ligand binding,

and in some cases may cause receptor internalization and immune cell recruitment [ 64]. Antibodies

generally allow much more specific blocking and thus have the advantage of specificity that small

molecule inhibitors tend to lack. Inhibitory antibodies are however, only effective against cell surface

receptors, and not against non-receptor tyrosine kinases.

Recent developments in medicinal chemistry and crystallography have led to the possibility of tailor-

made small molecule inhibitors that are designed to fit perfectly into the active site of the kinase. These

small molecules are able to enter the cell and it is therefore possible to target them to either the

intracellular kinase domain of RTKs or the cytoplasmic tyrosine kinases. However one of the caveats of

small molecule PTK inhibitors is that kinase domains are highly similar across the families, making

selective inhibition difficult. This does mean that multiple pathways may be blocked simultaneously,

which may have therapeutic benefit in some cases [ 27, 69]. The disadvantage of a less selective small

molecule PTK inhibitor is greater toxicity and risk of adverse effects. Some PTK inhibitors are well

tolerated, however reported effects are anemia, rash, diarrhea, nausea, fatigue, weight loss and

hypertension [ 70, 71].

The prototype small molecule PTK inhibitor is imatinib; targeted to the chimeric protein that occurs in

95% of chronic myeloid leukemia patients as a result of the t(9;22)(q34;q11) translocation [ 72]. This

fusion of the BCR gene to ABL , creates a constitutively active kinase [ 73]. Imatinib is able to

selectively inhibit BCR-ABL driven cell proliferation at submicromolar concentrations, while having

minimal effects on cells that do not have the translocation [ 74, 75]. Imatinib's mechanism of action is

now thought to be one of allosteric inhibition [ 76], binding to a site adjacent to the ATP pocket. More

'Type II' allosteric inhibitors are now being designed, that act by locking the kinase into an inactive state

and preventing signal transduction (reviewed in [ 77]).

Available strategies for anti-lymphangiogenesis therapy via PTK family



First proposed by Folkman in 1971 [ 2], anti-angiogenic therapy has now become accepted for cancer

treatment [ 78]. Current strategies for targeting the blood vasculature are focused on inhibition of VEGF

and/or blockade of the VEGFRs which activate the downstream pathways [ 71, 79]. Bevacizumab, also

known as Avastin (Genentech), is a monoclonal anti-VEGF antibody that has been approved in

combination with chemotherapies for colorectal cancer, non-squamous non-small cell lung cancer,

metastatic renal cell carcinoma and metastatic HER2-negative breast cancer [ 65, 66]. Despite this,

there is a risk of side effects such as gastrointestinal perforation, bleeding and impaired wound healing.

Bevacizumab's exact mechanism of action is somewhat unclear, and while it may have some anti-

angiogenic properties, the key may actually lie in the stabilization of tumor vessels. By normalizing the

tumor vessels, the blood flow is increased and interstitial pressure is reduced allowing conventional

chemotherapy better access to the tumor.

Other approaches have used soluble forms of VEGFR to create the 'VEGF-trap' (Regeneron), a

recombinant chimeric decoy receptor which is in clinical trials [ 80, 81]. Similarly, ImClone has

developed inhibitory antibodies for VEGFR-1 [ 82] and VEGFR-2 [ 83– 86], both of which are in

clinical trials. A human neutralizing anti-VEGFR-3 antibody has also been generated [ 87]; in mouse

experiments an equivalent antibody to mouse VEGFR-3 was shown to completely block tumor

lymphangiogenesis with no effect on preexisting vessels [ 88] (Table 1). Soluble VEGFR-3 and

antibodies targeted to VEGF-C and VEGF-D are in commercial development. Recently, several groups

have had success creating peptidomimetics in a form that are resistant to degradation [ 89, 90]. One of

these is targeted to VEGFR-1 and NRP1, and appears effective at blocking angiogenesis in mouse

models of retinopathy and cancer [ 90].

In contrast there are a large number of small molecule inhibitors available that inhibit VEGFR signaling

[ 71]. However many of them also inhibit the activity of other related RTKs such as platelet derived

growth factor receptors (PDGFRs), c-KIT and colony stimulating factor 1 receptor (CSF1R) due to

similarity in the kinase site, and it is not uncommon to show activity against a wider range of kinases.

The VEGF receptor inhibitors that have been FDA approved as chemotherapeutics are sorafenib (Bayer)

[ 91, 92], sunitinib (Pfizer) [ 93– 95] and pazopanib (GlaxoSmithKline) [ 96]. One of the commonly

seen issues associated with all anti-VEGF treatments is resistance, as alternative proangiogenic

pathways are switched on. Small molecule inhibitors that target multiple pathways (e.g. VEGFRs,

FGFRs and PDGFRs) simultaneously may avoid this problem, but also increase the risk of associated

side-effects. Sorafenib was originally designed to inhibit B-Raf, and was found to be effective in renal

and hepatocellular cancers. However, this is now attributed not to the inhibition of B-Raf, but to its

activity against VEGFR-2 and PDGFRβ [ 69]. This leads to blockade of angiogenesis through VEGFR-

2, and PDGFRβ inhibition prevents the recruitment of pericytes for vessel stabilization. Recently

Murphy et al. [ 97] reported a second generation 'Type II' inhibitor, designed to be highly selective for

PDGFRβ and B-Raf. Oral administration of this compound was able to suppress growth of orthotopic

kidney and pancreatic tumors in mice, with significant anti-angiogenic effects.

Eph-Ephrin signaling is a promising anti-angiogenic/anti-lymphangiogenic target. A number of small

molecule inhibitors are available [ 59], including EXEL-7647. EXEL-7647 is currently in clinical trials,

and inhibits epidermal growth factor receptor (EGFR), ErbB2, VEGFRs and EphB4 [ 98, 99]. Other

inhibitors in the form of peptidomimetics, inhibitory monoclonal antibodies, and soluble receptors are

being tested [ 59]. It also remains to investigate in more detail the contribution of other Eph receptors to

vascular biology; EphA2 signaling has been shown to contribute to tumor angiogenesis, while the

ligand ephrinA1 can be upregulated by VEGF [ 100]. This complex field of Eph signaling, if well

understood, could give rise to a range of useful therapeutics.

The nine Src family kinases are cytoplasmic PTKs closely associated with the cell membrane and both

RTKs and non-PTK receptors (Figure 2 ). Src family kinases mediate signal transduction pathways

relating to many critical functions of a cell; proliferation, apoptosis, cell adhesion and migration [ 25].

A number of small molecule inhibitors are available, and several are in clinical trials [ 25]. Inhibitors of

Src family kinases may be useful both to reduce the expression of growth factors in tumor cells [ 101],

as well as having direct effects on the endothelium. Src is known to interact with VEGF receptors, and a

selective Src inhibitor significantly reduced human umbilical vein endothelial cell (HUVEC)

proliferation and migration in vitro [ 102]. Recently Ischenko et al. showed that the Src inhibitor

AZM475271 was effective at blocking VEGF-C driven lymphangiogenesis in vivo [ 103] (Table 1).

Previously this inhibitor had been demonstrated to have potent anti-tumor and anti-angiogenic effects in

mouse pancreatic cancer models [ 104]. This suggests a common mechanism that could be targeted to

simultaneously block lymphangiogenesis, angiogenesis and tumorigenesis.

Currently there are no PTK inhibitors specifically targeting the lymphatics. Even VEGFR-3, which was

thought to be specific to LECs, has now been shown to be expressed at the leading edge of sprouting



blood vasculature [ 105]. Therefore this remains an attractive target for dual inhibition of blood and

lymphatic growth [ 105]. Encouragingly, it was recently shown that inhibition of the coreceptor NRP2

specifically blocked lymphatic vessel sprouting and migration but did not affect cell proliferation [ 40,

106]. As many of the trials of PTK inhibitors have been focused on anti-angiogenic efficacy, it remains

to be determined whether any possess significant anti-lymphangiogenic potential. Evaluation of specific

inhibitors will be required to identify those that have activity in in vitro and in vivo lymphangiogenesis

assays.

Identifying new targets for anti-lymphatic treatment

In order to identify new targets for anti-lymphangiogenic treatments efficiently, screening strategies

must be successfully employed. The recent and exciting advent of RNAi technology and high

throughput screening systems have allowed researchers to investigate the functional importance of a

large number of genes in in vitro assays [ 107– 109]. RNAi screens have been successfully used to

identify new molecules involved in many processes including cell cycle [ 110, 111], apoptosis [ 112],

endocytosis [ 113], cell migration [ 114– 116], morphology [ 117], neural outgrowth [ 118] and drug

resistance [ 119]. It has also been useful in dissecting molecular pathways to identify new regulators

and downstream mediators [ 120– 124]. Yet this powerful technique has hardly been utilized in

studying endothelial cell biology. RNAi screens could potentially identify new anti-lymphangiogenic

targets by screening for LEC migration and proliferation genes, or by screening for regulators of key

molecular pathways. Many commercial companies now offer siRNA libraries covering the human

kinome, making RNAi screening feasible for research laboratories. RNAi screens are primarily

considered a target identification tool, as there are still some obstacles to be overcome to the clinical

application of siRNA therapy. In addition, hits from a screen may not be easily druggable, or a drug

may give a different phenotype to the siRNA [ 27]. Nonetheless, a recent study does show that there are

feasible and effective methods for specific targeting and delivery of siRNAs in humans [ 125],

suggesting the RNAi screen may soon be used as a direct therapeutic agent identification tool.

High throughput screening of chemical libraries offers the opportunity to screen thousands of

compounds to identify small molecule inhibitors of a cell process of interest [ 126– 129]. If a key

kinase target is known, the assay readout can be set to indicate whether the compound is on-target [

130]. Chemical library screens are commonly performed in vitro , however the use of model organisms

such as Xenopus and Zebrafish has enabled high throughput chemical screens to be carried out in vivo .
Kälin et al. recently screened 1280 compounds looking for modulators of angiogenesis and

lymphangiogenesis in Xenopus [ 131]. Interestingly, several compounds known to inhibit tyrosine

kinases were identified as having selective anti-lymphangiogenic activity.

Alternatively, once a target has been identified, rational drug design can be used to develop a compound

that binds with high specificity [ 77]. This approach has been used to create drugs such as imatinib, but

also more recently a selective inhibitor of both B-Raf and PDGFRβ [ 97]. Finding the balance between

highly selective compounds and still inhibiting the multiple necessary pathways to see maximal effect

without causing severe side-effects will require a combination of approaches. RNAi screening allows

the entire genome to be screened, including the thousands of virtually unannotated genes. Similarly,

chemical libraries now comprise hundreds of thousands of compounds, many of which are unknown.

These platform technologies may soon provide targets and lead compounds, and eventually give rise to

reagents targeting protein tyrosine kinases for anti-lymphangiogenic therapy that have clinical

application.

Conclusions
The recent renaissance in lymphatic endothelial biology has led to a better understanding of the

important role these vessels play in health and disease. It is now apparent that specific targeting of

protein tyrosine kinases is an effective way to elicit anti-angiogenic responses in the context of cancer

therapy. Similar approaches could be used to target lymphatics to prevent metastasis, while in other

pathological conditions such as lymphedema, targeted therapy may be used to restore their growth and

subsequent function. Some of these treatments have been developed to existing targets such as the

VEGFRs and their ligands. Further testing will be required to fully determine their efficacy, but there

are also potentially many novel targets not yet discovered or not currently associated with lymphatic

biology.
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