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Abstract
Angiogenesis represents a form of neovascularisation of exceptional importance in numerous pathological

conditions including stroke. In this context it is directly related to neuroregeneration which is seen in close

proximity. However, numerous experimental data have been drawn from studies that have ignored the age

criterion. This is extremely important as angiogenesis is different in young versus old subjects.

Extrapolating data obtained from studies performed in young subjects or "in vitro" to old-age patients

could lead to inexact conclusions since the dynamics of angiogenesis is age-dependent.

The current review covers the key features of brain senescence including morphological and functional

changes related to the brain parenchyma, its vascular network and blood flow which could possibly

influence the process of angiogenesis. This is followed by a description of post-stroke angiogenesis and its

relationship to neuroregeneration and its modulation by vascular endothelial growth factor (VEGF) and

insulin-like growth factor 1 (IGF 1), the most important factors active in old brain after ischemic injury.

Introduction
Neovascularization represents a crucial phenomenon of paramount importance for the clinical outcome in

various pathological conditions including cancer, myocardial infarction and cerebral stroke. Until not too

long ago, it was thought that CNS damage induced by stroke is associated with irreversible tissue damage.

However, recently, experimental data indicates that this is not the case and neuroregeneration is observed

after stroke [ 1, 2]. Interestingly, it appears that post-stroke neuroregeneration depends significantly on

neovascularization which is encountered in several flavors: vasculogenesis, angiogenesis and

arteriogenesis [ 3]. Vasculogenesis represents the embryological development of the blood vessels from

angioblastic precursors and it has been recently described in patients after stroke [ 4]. Although, the extent

to which vasculogenesis modulates post-stroke neuroregeneration is not known, the link between this

process and angiogenesis is represented by VEGF and its receptor, which modulate transformation of

immature precursor structures into mature capillaries [ 5]. Arteriogenesis is the growth of collateral

arteries from pre-existing arterioles after blockage of the main artery. Compared with angiogenesis it does

not require a hypoxic environment, and is typically activated by increased pressure and stress, such as that

caused by occluded and partially occluded vessels [ 6]. The contribution of this process to

neuroregeneration is unknown, however, numerous studies have reported that angiogenesis or formation of

new capillaries from pre-existent vessels is closely related to neuroregeneration. After stroke, primordial

cells capable to differentiate into functional neurons have been identified in the immediate vicinity of

newly formed capillaries [ 7]. Therefore, it was claimed that this process can be regarded as a

neurorestorative event promoting formation of new neurons from adult brain's own neural stem cells

(NSC) [ 8, 9]. Although factors such as matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9

(MMP-9), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), Hepatocyte growth factor (HGF-

alpha), monocyte chemo-attractant protein 1 (MCP-1) are increased after ischemic stroke the most
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important seems to be VEGF and its receptor which are increased in the periphery of the ischemic zone at

3 hours after stroke [ 10, 11].

Although, a great deal of research has been performed, it seems that there are significant differences in the

angiogenesis encountered in old subjects compared with young ones, including the extent of this process

and the factors that may modulate it during different developmental stages. However, since angiogenesis

depends on the pre-existing vascular network it is very important to understand if there is any relationship

between what is happening with the brain per se and its cerebral blood vessels during senescence and the

extent and/or modulation of post-stroke angiogenesis in this context.

The current review will highlight the most salient points related to the senescent brain and its vasculature,

and then based on the published data we will review the factors which unequivocally modulate

angiogenesis only in elderly subjects. This is necessary since ischemic stroke is mostly described in old

age and extrapolating results obtained "in vitro" or from young subjects could lead to erroneous

conclusions.

CNS aging process: pivotal points

Normal aging is associated with a cognitive decline and understanding the related mechanisms remains a

central challenge in neuroscience. Moreover, it is currently poorly understood how the CNS

morphological changes associated with old age would affect the vascular network and ultimately post-

stroke angiogenesis.

Morphological and physiological studies have tried to explain the decline in cognitive function associated

with old age based on anatomical changes. More than fifty years ago, it was suggested that weight

reduction in the senescent brain could be explained by a significant reduction in the neurons [ 12].

Recently, MRI studies conducted in healthy volunteers have revealed that brain weight loss may affect

with predilection only some regions of the brain such as hippocampus or the prefrontal, frontal or

enthorinal cortex and the loss of white matter is greater than the decrease in grey matter [ 13, 14]. Other

authors have recorded a reduction of the whole limbic system grey matter in healthy elderly [ 15].

Between 30 and 90 years of age, there is an overall decrease in weight of 14% recorded in the cerebral

cortex associated with a 35% reduction in the hippocampus, and a 26% weight loss in the cerebral white

matter [ 13]. However, it is still debatable if the changes seen in hippocampus are related to "normal"

senescence as other studies have suggested that cell death and a decline in weight occurring in this region

is not normally observed [ 16, 17].

Studies in mice have indicated that aging may reduce both overall neural cell proliferation as well as the

developmental pathway followed by proliferating cells in the brain, leading to fewer mature neurons

replacing those lost to age or damage [ 18].

Regarding the vasculature, although earlier studies have shown no difference or even an increase in the

cerebral arteriolar network in old versus young subjects, the current opinion is that old age is characterized

by a significant decrease in density of vessels supplying the cerebral cortex compared with young controls

as well as morphological changes of the remaining vessels [ 19– 22]. More recently, Amenta et al (1995)

have reported that the capillary network is significantly decreased in Wistar rats of 27 and 24 months

versus young 12 month-old subjects [ 23]. Therefore, it seems unequivocal that aging is associated with a

significant decrease in superficial cortical vessels which according to some authors, could be induced by

an age-related decrease in growth hormone and insulin-like growth factor 1 [ 21]. However, growth

hormone treatment administered to aged animals for 6 weeks did not alter hippocampal capillary density

and did not ameliorate the age-related deficit in angiogenesis. Therefore, the exact relationship between

growth hormone and angiogenesis remains to be elucidated. However, aged animals demonstrate a

significant impairment in hypoxia-induced capillary angiogenesis compared to young animals [ 24].

Regarding the structural alterations of the vessels, significant aging-related microvascular degeneration

was encountered especially in the periventricular white matter [ 25]. Also, in elderly rat subjects there is a

decrease in smooth muscle and elastin in parallel with an increase in collagens which impair distension [

26]. Senescent arterioles present with alterations in capillary endothelial cells including a thickened

basement membrane, abnormal inclusions and abnormalities of the astrocytic endfeet [ 27– 29]. However,

the mechanism behind these changes remains poorly understood although it is accepted that these

ultrastructural alterations could lead to a small leakage of blood in the parenchyma [ 30].

Regarding the cerebral blood flow in old-age, recent data suggests that it decreases with advancing age [

31, 32]. Previous studies have shown a direct correlation between cerebral blood flow and vascular

density [ 33]. It seems that cerebral blood flow is modulated by circulating norepinephrine, NO and

sympathetic noradrenergic innervations of cerebral arteries. The young subjects are characterized by little

noradrenergic innervations of cerebral arteries and weak cerebral vasoconstriction. These innervations



increase with age but decrease by middle-age in a murine model. However, the norepinephrine evoked

cerebral vasoconstriction is stronger in mature and middle-aged rats and although the NO would limit the

vasoconstriction, this is followed subsequently by a drop in cerebral blood flow [ 34]. Interestingly,

previous studies conducted in a murine model suggest that a decreased blood flow is paralleled by a

decline in cognitive tasks [ 35– 37]. Therefore, one may speculate that a decrease in blood flow would

lead to a decreased energetic support for neurons which complicates the functional profile of the aging

brain including the post-stroke angiogenesis. The most important changes in vascularization with ageing

in the brain are represented in Figure 1 .

Figure 1

Aging produces a number of physical and biochemical changes in the vascular system that contribute

to the age related degeneration of the brain. At the macroscopic level, reduced vessel density is

observed in aging brains, leading to an overall reduced blood flow and oxygenation into brain tissue,

that may be further exacerbated by pathological factors. At the cellular level, the vessel walls begin to

reduce the expression of growth factor receptors, leading to reduced ability to respond to growth and

survival factors. Vessels also begin to lose smooth muscle cells, reducing the capacity of vessels to

maintain blood pressure, reducing oxygenation in certain circumstances. Aging also leads to a reduced

expression of growth and survival factors into the bloodstream, further reducing the survival capacity

of vessel lining cells. Many of these factors combine to lead to vessel degeneration, where reduced

flow rates, reduced receptor expression and reduced growth factors lead to narrowing of vessels,

further reducing flow and reducing vessel diameter, to a point where red blood cells can no longer flow

through vessels, leading to loss of oxygenation of tissues and further degeneration into a string vessel

state.

In addition, old age is characterized by the presence of several pathological entities affecting the

vasculature. Cerebral atherosclerosis and small vessel disease are characterized by plasma protein infusion

into the vessel wall, accumulation of foamy cells, and fibrosis while another relatively common condition,

amyloid angiopathy, is associated with deposition of amyloid in the vessel wall [ 38]. Therefore, since the

functionality of the nervous system is dependent upon a well developed and maintained blood supply, we

could speculate that any morphological and physiological aging-related changes in the microvasculature

could affect neuronal integrity. Related to Alzheimer's disease which is also seen in old-age patient,

clinical studies have indicated that education has a protective effect. This has been attributed to a



"reservoir effect", with the loss of neurons compensated for by more extensive neural connections. Given

the links between dementias and reduced blood flow to the brain, it is possible that at least some of this

effect may be mediated through a more developed vascular system, or potentially by retention of more

juvenile modes of angiogenic response due to extended learning. This would make some sense in the

context of experimental studies conducted in rats, which show that angiogenesis occurs in the adult rat

cerebellum after physical exercise and motor skills learning [ 39].

A brief account of central nervous system "normal" senescence and the pathological changes associated

with it is presented in Figure 2 .

Figure 2

Central nervous system "normal" senescence and pathological changes. Aging in the CNS involves a

range of diverse changes, including those associated with normal senescence and present in all

surveyed brains. These include reduced weight of brain as a result of decreased neuron counts, as well

as reduced vessel density and integrity in the vasculature. More pathological changes include

atherosclerosis, small vessel disease and amyloid proteins. These combine with normal vaso-

constriction and dilation effects to alter overall cerebral blood flow.

Post-stroke angiogenesis

One may define the process of angiogenesis as sprouting of new capillaries from pre-existent vessels. As a

result of this ongoing process, the newly formed plexus increases gradually in size and remodels into a

vascular network which ultimately forms endothelial-cell (EC) channels in close proximity with pericytes

and smooth muscle cells. This cellular composition is of paramount importance for functionality of the

new vessels including the strength of the wall and regulation of the blood flow [ 40]. Interestingly after

stroke, neuroblasts which will further differentiate into fully functional neurons were identified in close

proximity around the immature newly created vascular network [ 41]. This would suggest that

neurogenesis depends on a preliminary angiogenesis.

Post-stroke cerebral angiogenesis represents an essential event of crucial importance that unfortunately is

not completely understood. Several factors such as: beta-catenin, matrix metalloproteinase-2 (MMP-2)

matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), hepatocyte

growth factor-alpha (HGF-alpha), monocyte chemoatractant protein-1 (MCP-1) and Angiopoietin1/Tie-2

as well as c-kit are increased after ischemic stroke [ 42].



Beta-catenin is a member of the cadherin complex and a signaling protein in the Wnt pathway. It has been

linked to the proliferation of neuronal progenitor cells in stroke induced neurogenesis [ 43]. In stroke,

MCP-1 is thought to be one of the major factors influencing infiltration of the infarct region by leukocytes

and is linked with increased volume of the infarct and increased damage [ 44]. Experimental data suggests

that in rats with middle cerebral artery occlusion the lack of MCP-1 or its receptor CCR-2 is associated

with a significant decrease in the number of migrating neuroblasts reaching the ischemic area. This affects

the neural regeneration negatively [ 45]

The MMP family participates in the breakdown of various extracellular matrix proteins, and is associated

with wound healing and tissue remodeling. In stroke, the MMPs have been implicated in the breakdown of

the blood-brain barrier and increased damage [ 46– 51]. Different MMPs are expressed in different

conditions and at different times following stroke, with MMP-2 being amongst the first activated, followed

by MMP-9 in later stages of inflammation and repair [ 52].

Research conducted in murines recently, indicates that the major source of MMP-9 in cerebral ischemia is

represented by bone-marrow derived cells [ 53]. Remarkably, MMP-9 promotes neural progenitor cells

migration towards the ischemic brain area in a model of transgenic mice after photothrombotic ischemia [

54].

Clinical studies conducted in patients with various types of stroke have revealed that MMP-2 gene is

associated with the development of lacunar stroke [ 55]. However, it rises in parallel with MMP-9 in a rat

model of transient cerebral ischemia [ 56]. It seems that MMP-2 and MMP-9 expression is decreased after

minocycline administration in rats with induced cerebral ischemia. This is associated with a decreased

incidence of hemorrhage and decreased degradation of collagen IV and laminin alpha in the brain.

Overall, the neurological outcome in cerebral ischemia is improved by minocycline through MMP-2 and

MMP-9 downregulation[ 57]. In patients with severe stroke both MMP-2 and MMP-9 have a strong

association with edema formation and midline shift [ 58].

The TIMPs are inhibitors of the MMPs and their induced overexpression has been shown to aid in

reduction of infarct size and recovery in a rat model of ischemia [ 59].

HGF-alpha is known to induce angiogenesis and has been seen to increase in expression following MCAO

in mouse models, though a high serum level of the protein was found to be an independent risk factor for

stroke in postmenopausal women [ 60, 61].

Experimental evidence suggests that angiopoietin 1 (Ang1) and its endothelial kinase 2 (Tie2) are up-

regulated after stroke by a nitric oxide donor and subsequently promote neuroblast cell migration towards

the ischemic area [ 62]. Inceased levels of Ang1/Tie2 have been recorded in ischemic stroke models after

simvastatin treatment and infusion of bone marrow stromal cells. Both treatments result ultimately in

vascular stabilization and angiogenesis [ 63, 64].

The above mentioned factors are involved in events of paramount importance namely, endothelial cell

migration, tissue remodeling, differentiation and tube-formation, vessel stabilization and stem cell homing

mechanisms in areas of revascularization. Therefore, we could speculate that therapy modulating their

expression and the activity of these factors could help the recovery and restoration of the damage after

stroke [ 42]. Several of these factors are also associated with arteriogenesis, and it is possible that multiple

systems may come into play after stroke, depending on its severity, or that there is a certain amount of

cross-talk between the angiogenic and arteriogenic systems. A concise summary of the possible molecular

mechanisms and general effects of angiogenesis after stroke in elderly subjects is presented in Figure 3 .

Figure 3



Possible molecular mechanisms and general effects of angiogenesis after stroke in elderly subjects.

Stroke causes ischemic damage to the brain, activating angiogeneic mechanisms in response. The

degree of response is modulated by changes to the neural and vascular response caused by aging, but

the general response remains similar. Growth factors, tissue remodeling and inflammatory proteins are

released, leading to the building of new, well developed endothelial channels, which aid recovery.

However, at the present time, we do not have any information on the dynamics of the above mentioned

factors with aging. Since ischemic stroke is most likely to be encountered in elderly, any possible therapy

should be verified in the context of aging. This means taking into consideration the level of the targeted

factors in old age, the ability of the vascular and support systems to respond to them and the integrity of

downstream gene expression in the targeted pathways. To date, only VEGF and IGF-1 have been

evaluated as modulators of neovascularisation in old subjects.

Post-stroke angiogenesis modulators in old age subjects

In conclusion

Old age is associated with a variety of morphological, physiological and metabolic features which may

alter recovery after stroke. These features combine normal aging of brain with the ongoing processes of

neurodegeneration and small vessel disease. These work in synergy to reduce the capacity of both neural

and vascular cells to respond to ischaemic insult, as well as compromising their maintenance and basic

functions.

One of the most important changes is represented by a decrease of the normal cerebral vascular network.

This may affect the ability of the old-age subjects to mount an adequate pro-angiogenic response after an

insult such as stroke. VEGF/VEGFR and IGF-1 represent the most important modulators of post ischemic

angiogenesis. Research is showing that some of the changes to the mechanisms behind these effects are

similar in both neural and vascular tissues. However, we cannot be sure if the decrease in their level is due

to morphological, physiopathological or metabolic changes, or how these may interact to contribute to the

changes seen in the aging brain and vasculature. The role and the promoters of these factors are also

incompletely understood, but they may be related to age-associated loss of cellular proliferative ability and

increasing negative regulation by cellular senescence markers. In addition, since ischemic stroke is a

pathological entity most likely encountered in the elderly, future studies should evaluate any possible

therapeutic targets related to post ischemic stroke angiogenesis only in aged animals or higher passage in
vitro systems. More research is also needed to fully explain the mechanisms at work in the ischemic



senescent brain which may influence angiogenesis and/or the final outcome of the subject. This is crucial

not only to understand the nature of stroke, but also to provide the best therapeutic response with current

methods and to develop new treatment and, potentially, preventative options.
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