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Abstract
Macrophages regulate many developmental and pathological processes in both embryonic and

adult tissues, and recent studies have shown a significant role in angiogenesis. Similarly, Wnt

signaling is fundamental to tissue morphogenesis and also has a role in vascular development. In

this review, we summarize recent advances in the field of macrophage-regulated angiogenesis,

with a focus on the role of macrophage-derived Wnt ligands. We review data that provide both

direct and indirect evidence for macrophage-derived Wnt regulation of physiologic and

pathologic angiogenesis. Finally, we propose that Wnt signaling plays a central role in

differentiation of tumor associated and wound infiltrating macrophages to a proangiogenic

phenotype.
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Introduction
Angiogenesis is the growth of new blood vessels from the existing vasculature. This process

plays critical roles in both development and pathological conditions such as tumor growth and

diabetic retinopathy [ 1]. During angiogenesis, endothelial cells (EC) coordinate signals derived

from a multitude of stromal cells in close proximity to the blood vessels, including fibroblasts,

smooth muscle cells/pericytes and macrophages [ 2]. Growth factors, proteases and extracellular

matrix (ECM) components derived from these stromal cells participate in the process [ 1]. In this

review, we will focus on the role of macrophage-derived Wnt signals in regulating angiogenesis.

Members of the Wnt protein family have been shown to regulate diverse biological processes

including cell proliferation, apoptosis, polarity, differentiation and the maintenance of

pluripotency in stem cells [ 3]. Wnt proteins have been studied extensively, but only recently has

their function in angiogenesis begun to be elucidated. Macrophages comprise a diverse group of

cells from the mononuclear phagocytic lineage [ 4]. They are highly plastic, exhibiting dramatic

changes in phenotype in response to various stimuli and, in addition, are believed to exist in a

multitude of subpopulations [ 4– 6]. This review is not intended to be an overview of different
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macrophage phenotypes and subpopulations, instead, we highlight studies showing an

angiogenic function for a variety of the different subpopulations of macrophages. We will

employ a general definition of macrophages as any non-dendritic cell of monoblast origin, which

includes monocytes and the specialized tissue-resident macrophages of the central nervous

system, microglial cells. Increasing evidence suggests that macrophages mediate their effects on

angiogenesis, in part, through secretion of members of the Wnt family of secreted glycoproteins.

The role of Wnts in angiogenesis
In humans, Wnt signaling is mediated by a family of 19 secreted Wnt glycoproteins and 10

transmembrane Frizzled (Fzd) receptors [ 7]. Although the distinction is becoming less clear [ 8,

9] Wnt signaling is generally broken down into the canonical, Wnt/β-catenin pathway, and the

non-canonical, Wnt/Calcium and planar cell polarity (PCP) pathway. In the canonical Wnt

pathway, Wnt ligand binding to Fzd and the co-receptors, LDL-receptor-related proteins-5 or −6

(Lrp5/6), leads to cytosolic β-catenin accumulation. β-catenin then translocates to the nucleus

where it binds to transcription factors of the lymphocyte enhancing factor (LEF)/T-cell factor

(TCF) family, thereby activating transcription of a number of target genes [ 7, 10]. Non-

canonical Wnts signal through Fzd receptors as well as members of the receptor tyrosine kinase-

like orphan receptor (Ror) family and the Wnt modifier, receptor-like tyrosine kinase (Ryk). This

pathway leads to changes in cell polarity and migration and is mediated by Ca influx as well as

activation of the small GTPases, RhoA, Cdc42 and Rac [ 11, 12]. A detailed overview of Wnt

signaling is beyond the scope of this review and the reader is referred to many excellent reviews

[ 7, 8, 10, 11] as well as the Wnt Gene Homepage at

http://www.stanford.edu/~rnusse/wntwindow.html.

Evidence for Wnt signals regulating angiogenesis is provided firstly by reports of ECs expressing

a number of Wnt receptors including Fzd1, Fzd2, Fzd4, Fzd5, Fzd6, Fzd7, Fzd9, Fzd10, Lrp5,

Lrp6 and the Wnt signaling modulator,Ryk [ 13– 16]. It is not surprising then, that there are

numerous reports showing that EC respond to Wnt proteins in vitro. Wnt1, Wnt3a and Wnt5a

have all been shown to control EC proliferation and in some cases migration [ 17– 23], two

processes critical for angiogenesis. In addition, the Wnt antagonist, secreted frizzled-related

protein 1 (sFRP1) reduces EC proliferation [ 24] and canonical Wnt signaling was shown to

promote tube-like formation on Matrigel [ 25]. Masckauchan et al. have shown that Wnt5a

induces expression of Tie-2 in human umbilical vein endothelial cells (HUVEC), a receptor

tyrosine kinase involved in EC survival and maturation [ 19] and we have independently

confirmed this finding in our lab (unpublished observations). Thus, it is clear that Wnt signaling

pathways can regulate angiogenesis in vitro.

The story is much the same in vivo, with several reports of active Wnt signaling in EC

undergoing angiogenesis [ 26– 33]. Moreover, many Wnt signaling pathway alterations lead to

vascular defects. β-catenin nuclear localization has been observed in capillaries during human

development [ 28] and various reporter mice have shown that canonical Wnt signaling is active

in EC during developmental angiogenesis [ 27, 30, 31]. β-catenin has also been shown to

accumulate in the nucleus of EC undergoing pathological angiogenesis in rat models of

myocardial infarction [ 26] and glioma [ 32] as well as in human tumors of the central nervous

system [ 29, 33]. Of note, β-catenin nuclear localization is rarely seen in adult quiescent EC [

26, 29, 32, 33]. Changes in Wnt signaling pathways have also been correlated with

angiogenesis. For example, endothelial-specific β-catenin gain-of-function mutant mice are

embryonic lethal and display decreased vessel lengths and increased lumen diameter [ 34]. These

mice also display upregulated Notch signaling, another important mediator of vessel growth [

34]. Injection of cells overexpressing Wnt1 and Wnt3a into the chick paraxial mesoderm leads to

increased vascular density [ 35], and disruption of the Wnt2 gene in mice results in placental

vascular defects with a decrease in the number of fetal capillaries [ 36].
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Disturbing Wnt receptor expression in vivo can also lead to vascular defects, with the most well-

studied receptors being Fzd4 and Fzd5. Fzd4 loss-of-function mutations have been linked to

familial exudative vitreoretinopathy (FEVR), a disease characterized by abnormal retinal

vasculature [ 37]. Furthermore, Fzd4 deletion in mice has been shown to alter vessel formation

in the cerebellum and the retina [ 38]. However, at least in the retina, one Fzd4 ligand is Norrin,

which is not a Wnt family member, but does activate the canonical Wnt signaling pathway [ 38].

In a recent study, Descamps et al. showed that Fzd4 mice display significant reductions in

arteriole density in the heart and kidney as well as impaired angiogenesis in a mouse model of

hind limb ischemia [ 39]. The evidence presented in that study suggests that the Fzd4 ligand is a

non-canonical Wnt. Fzd5 knockout (KO) mice are embryonic lethal due to defects in yolk sac

angiogenesis. Specifically, EC proliferation is impaired and an incomplete capillary plexus is

formed [ 40]. A more recent study using a conditional genetic deletion of Fzd5 to bypass the

perinatal lethality observed in the original KO mouse, shows that this Wnt receptor also regulates

blood vessel development [ 41].

Clearly there is a plethora of evidence implicating Wnt signaling in modulating angiogenesis.

For a more extensive overview of the literature, the reader is referred to several recent reviews [

42– 44].

Macrophages in angiogenesis
There is substantial evidence that macrophages play a significant role in both physiological and

pathological angiogenesis [ 4, 45, 46]. In mouse development the first macrophages appear at

7.5 days post-coitum (dpc) and starting between 8 and 9.5 dpc they can be found in both extra-

embryonic and embryonic tissue [ 47], placing them in prime position to regulate angiogenesis.

In support of this idea, embryonic macrophages, compared to circulating adult macrophages,

have been shown to have “wound healing” and “angiogenesis” gene expression signatures [ 48].

Macrophages colonize the mouse embryonic hindbrain independently of blood vessel formation

and Fantin et al. showed that these tissue-resident macrophages associated with angiogenic tip

cells during the same time period that neighboring vessels were anastomosing with one another [

49]. Ablation of macrophages, using both PU.1 and Csf-1 mice, resulted in a decreased

number of vessel intersections in the hindbrain, providing the first evidence that macrophages

actively participate in vessel anastomosis [ 49]. Interestingly, these tissue-resident macrophages

were shown to express Tie-2 and NRP1, two genes that are known to be significantly upregulated

in proangiogenic macrophages [ 47]. Also of note, the effect of these macrophages on

angiogenesis is not mediated by vascular endothelial growth factor-A (VEGF-A) secretion [ 49].

However, the study does not rule out the possibility that macrophages secrete other VEGF

isoforms that contribute to angiogenesis. Evidence for macrophages regulating vessel

anastomosis in other tissues comes from studies in the mouse retina [ 49– 51]. Outtz and

colleagues provided evidence that macrophage Notch1 regulates this process [ 50] and studies

from Rymo et al. indicate that microglial-secreted factors other than VEGF-A increase vessel

sprouting and branching in the rat aortic ring model of angiogenesis [ 51].

Macrophages, given their ability to migrate within virtually all tissues of the body, are also an

ideal cell to regulate angiogenesis during tissue injury and repair. Using, a transgenic mouse

model of ischemic cardiomyopathy, Moldovan et al. showed that macrophages carved out

tunnels in the ECM, thereby providing avenues for subsequent capillary infiltration [ 52].

Macrophages are actively recruited to wound sites and macrophage-depletion during early phases

of the wound healing process leads to reduced formation of vascularized granulation tissue,

whereas depletion during later phases caused severe hemorrhage and prevented wound closure [

53]. These findings implicate macrophages in mediating both the initial and maturation stages of

angiogenesis. A separate study showed that wound healing was delayed in macrophage-deficient

Csf-1 mice and this correlated with decreased vascular density [ 54]. Thus, although it is
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well known that macrophages serve an immune function during tissue repair, it is also clear that

they play a trophic role through the regulation of angiogenesis.

A rapidly developing field is the study of tumor-associated macrophages (TAMs) and their role

in promoting tumor progression. It comes as no surprise that TAMs mediate some of their effects

on tumor growth by regulating angiogenesis [ 45, 46, 55, 56]. TAMs can be recruited to tumors

by a number of different cytokines, including CCL2 and CSF-1/M-CSF [ 57– 59]. TAMs have

been shown to regulate tumor angiogenesis in a number of different tissues including bone,

brain, breast, cervix, colon and lung, among others [ 60– 66]. They have been shown to mediate

angiogenesis in part by secretion of VEGF, along with proteases, such as matrix

metalloproteinases (MMPs) [ 64, 67]. Interestingly, studies by De Palma and colleagues have

shown that the majority of proangiogenic TAMs in tumors are Tie-2 expressing monocytes

(TEMs) [ 47, 68], implicating Tie-2 as an important marker of proangiogenic macrophages.

Indeed, Angiopoietin-2 (Ang-2) signaling via Tie-2 in TEMs has been shown to upregulate

proangiogenic genes [ 69]. Although TEMs have been shown to exist as a subset of circulating

monocytes [ 68], studies have shown that conditions of hypoxia can upregulate Tie-2 expression

in monocytes [ 70]. As in EC [ 19], Tie-2 expression in macrophages may also be regulated by

Wnt5a. It is clear that macrophages regulate angiogenesis through multiple mechanisms,

however, a detailed discussion on the role of macrophage-derived cytokines in angiogenesis is

beyond the scope of this review.

Macrophage-derived Wnts regulate angiogenesis
Based on the studies outlined above, it is evident that both macrophages and secreted Wnt

proteins regulate angiogenesis. It may, therefore, be reasonable to hypothesize that Wnt ligands

mediate some of the effects that macrophages have on angiogenesis, and indeed, macrophages do

express Wnt ligands. Interferon-γ (IFN-γ) and lipopolysaccharide (LPS), two potent inducers of

inflammation, lead to significant upregulation of Wnt5a transcript and protein levels in

macrophages [ 71]. Furthermore, Wnt5a can signal in an autocrine manner to induce expression

of several pro-inflammatory cytokines in macrophages including IL-6, IL-8 and IL-1β [ 71], all

of which have been shown to be pro-angiogenic [ 72– 75]. Given that Wnt5a has also been

shown to induce expression of several inflammatory cytokines in EC, including IL-6 and IL-8 [

76]combined with the direct effects that Wnt5a has on EC proliferation, migration and Tie-2

expression [ 18, 19, 22], it is reasonable to hypothesize that macrophage-derived Wnt5a

regulates angiogenesis via both direct and indirect mechanisms and at multiple levels. Moreover,

as Wnt5a has also been shown to upregulate expression of the macrophage chemotactic protein,

CCL2, in EC [ 76], it is possible that macrophage-derived Wnt5a could indirectly drive

additional rounds of macrophage recruitment.

Aside from inflammatory angiogenesis, research in cancer biology also points to a role for

macrophage-derived Wnts in regulating tumor angiogenesis. Smith et al. looked at Wnt

expression in 14 matched cases of normal, adenomatous and malignant colorectal tissues and

reported upregulation of Wnt gene expression in TAMs, in particular, Wnt2 and Wnt5a, during

the progression from normal through adenoma to carcinoma in colorectal tissue [ 77]. Of note,

the angiogenic switch in colorectal cancer is thought to occur during the progression from

adenoma to carcinoma [ 78]. As mentioned earlier, TAMs play an essential role in breast cancer

angiogenesis [ 60, 61]. Ojalvo et al. separated “invasive” TAMs from general TAMs using an in

vivo migration assay [ 79] combined with fluorescent activated cell sorting (FACS) [ 80], and

used gene expression analysis to show that “invasive” TAMs were enriched for Wnt signaling

molecules [ 80]. Based on these findings and others, Qian and Pollard recently hypothesized that

this subset of Wnt-expressing-TAMs may link angiogenesis and tumor invasion [ 46]. Further

investigation is needed to confirm the role of macrophage-derived Wnts in regulating colorectal

and breast tumor angiogenesis.



Direct evidence for the involvement of macrophage-derived Wnts in regulating hyaloid vascular

remodeling and developmental angiogenesis in the retina comes from studies by Lang and

colleagues. The hyaloid vessel system is laid down during development of the eye and requires

remodeling after birth to allow for unobstructed vision [ 81]. Macrophages are in close contact

with these vessels and genetic approaches that deplete macrophages lead to a loss of remodeling

and the persistence of these vessels post-natally [ 82]. Further examination revealed that

macrophage secretion of the canonical Wnt protein, Wnt7b, is required for this process [ 83].

Specifically, pericyte secretion of Ang-2 induces Wnt7b expression in macrophages; Wnt7b then

stimulates vascular EC entry into the S phase of the cell cycle. Pericyte secretion of Ang-2

inhibits Ang-1-mediated survival signaling in EC and also signals through β-catenin to induce

cell cycle entry and subsequent apoptosis [ 83, 84]. The authors hypothesize that the need for

macrophage-derived Wnt7b allows for coordination of apoptosis and phagocytosis [ 84].

Non-canonical Wnts secreted by macrophages also regulate vessel branching in the mouse retina.

Shortly after birth, vessels from the superficial vascular plexus on the surface of the retina sprout

vertically, down through the ganglion. Upon reaching the outer edge of the inner nuclear layer,

EC turn and branch to form the deep vascular plexus [ 85]. Stefater et al. showed that retinal

myeloid cells (RMC) are in close contact with tip cells of EC sprouts at the point of branching

and remained associated after EC extend within the plane of the deep retinal layer [ 86]. They

further showed that this population of RMCs is different than RMCs found in the superficial

vascular layer. Specifically, they express the non-canonical Wnt ligands, Wnt5a and Wnt11,

whereas superficial RMCs do not [ 86]. The authors also demonstrated that myeloid-specific

deletion of the gene for the Wnt ligand transporter Wls, a protein required for Wnt secretion [

87], resulted in increased vascular density of the deep vascular plexus, a phenotype shared by

Wnt5a and Wnt11 heterozygotes. The mechanism was shown to involve an autocrine-

signaling axis where macrophage-derived Wnt5a and Wnt11 induce secretion of the soluble

VEGF inhibitor Flt1 [ 88, 89] that, in turn, inhibits vessel branching [ 86].

It is clear that Wnt signaling is important for angiogenic regulation by macrophages and we

anticipate that future research in this field will reveal an even more crucial role for these proteins

in this process.

Conclusions and perspective
We have laid out evidence indicating that macrophages regulate angiogenesis, in part, through

secreting and responding to Wnt signaling glycoproteins. This is true in both developmental and

pathological angiogenesis. It is interesting and perhaps not unexpected that in some cases Wnts

seem to be pro-angiogenic, as is the case for Wnt5a-induced EC proliferation and migration [ 19,

20], and in other cases inhibitory, for example Wnt5a inhibition of vessel branching in the retinal

deep vascular plexus [ 86]. One possible explanation for this relates to the fact that angiogenesis

is a series of events with different morphological changes required at different stages. Therefore,

the same protein may inhibit or induce angiogenesis depending on the stage of angiogenesis at

which it is present. We also reason that these differences are due to differential Wnt receptor

expression on the various cells responding to the signal as well as different signaling proteins

that are present in the microenvironment. Coordinated crosstalk of Wnt signaling pathways with

other pathways in EC such as Notch/Dll4, VEGF, Ang1/2 and focal adhesion kinase (FAK) [ 90]

ultimately will determine the nature of the response. Furthermore, the cell population in a given

tissue will likely alter the angiogenic response to macrophage-derived Wnts. We have discussed

Wnt signaling in ECs and macrophages, but it is likely that Wnt binding to fibroblasts, smooth

muscle cells and pericytes alters their phenotype as well. In the cases described above,

differences in the effect of Wnt5a on angiogenesis could be explained by which cells bind the

Wnt5a ligand. Wnt5a binding directly on the EC induces proliferation and migration, whereas

Wnt5a signaling in an autocrine manner in macrophages leads to upregulation of the soluble

VEGF inhibitor, Flt1, to reduce vessel branching.
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Based on the studies that we have presented in this review, we hypothesize that Wnt5a is a

crucial mediator of macrophage phenotype. It is known that Wnt5a induces Tie-2 expression in

EC [ 19] and it would be interesting to determine if macrophages respond in the same manner,

especially as TEMs are known to be critical mediators of angiogenesis [ 47, 68, 69]. This would

implicate Wnt5a as an important determinant of macrophage differentiation from an

inflammatory function to a more trophic function. We propose a model where wounding or

inflammation leads to a release of inflammatory cytokines, including the macrophage

chemotactic proteins CCL2 and M-CSF (Figure 1A). Upon recruitment, macrophages release

Wnt5a, which induces EC proliferation and migration, but also upregulates Tie-2 expression in

macrophages and EC (Figure 1B). These Tie-2 expressing macrophages (TEM) respond to Ang-

2 secreted by EC and pericytes and polarize into a more proangiogenic macrophage [ 69] (Figure

1C). During later stages of angiogenesis these TEMs aid in vessel anastomosis and maturation

(Figure 1D). Figure 1

Model for macrophage-derived Wnt5a regulation of angiogenesis. (A)A wound or inflammation

induces secretion of cytokines, including the macrophage chemotactic cytokines M-CSF and

CCL2, by fibroblasts, pericytes, EC and other stromal cells present at the site of injury.

(B)Monocytes extravasate from the blood vessels and secrete Wnt5a, which upregulates

expression of Tie2 in macrophages and EC (note: basal levels of Tie-2 expression not depicted)

as well as induces proliferation and migration of sprouting EC. (C)EC and pericyte-derived Ang2

signals through Tie2 expressed on the surface of TEMs, further polarizing macrophages to a

proangiogenic phenotype. (D)TEMs then participate in the maturation phases of angiogenesis,

including vessel lumen formation and anastomosis.

Additionally, studies of TAMs show that “invasive” TAMs in breast cancer are enriched for Wnt

signaling pathway components [ 80] and colon cancer progression correlates with increased

Wnt5a expression in TAMs [ 77]. These observations, combined with studies implicating TEMs

as the predominant proangiogenic macrophage within the tumor microenvironment [ 47, 68],

suggest that this model may be relevant to tumor angiogenesis as well, especially in light of the

tumor being a “wound that does not heal” [ 91]. Owing to the perinatal lethality exhibited by

Wnt5a-null mice [ 92], it has been difficult to study its function in vivo. Until conditional Wnt5a

KO mice are made, we anticipate that complex three-dimensional in vitro models that

incorporate macrophages and allow for easy manipulation of cells will be vital in elucidating the

role that this signaling pathway plays in macrophage-regulation of angiogenesis. Looking ahead,

we foresee more sophisticated experimental systems uncovering an even greater role for

macrophage-derived Wnt ligands in regulating angiogenesis.
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