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Abstract
Angiogenesis is regulated, under both physiological and pathological conditions, by numerous

“non-classic” pro-angiogenic factors, including fibroblast growth factor-2 (FGF-2), vascular

endothelial growth factor (VEGF), and placental growth factor (PlGF), and “non-classic” pro-

angiogenic factors, including granulocyte colony stimulating factor (G-CSF), granulocyte

macrophage colony stimulating factor (GM-CSF), and erythropoietin (EPO). In the context of

the most important discoveries in this field, this review article summarizes the important role

played by the Italian scientists in the course of the last twenty years.
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Introduction
In 1945, Algire and Chalkley were the first to appreciate that growing malignant tumors could

continuously elict new capillary growth from the host [ 1]. In 1970s, it was widely accepted that

tumors did not produce specific angiogenic proteins. In 1971, Judah Folkman isolated the first

angiogenic factor, and called it “Tumor Angiogenesis Factor” (TAF). He fractioned by gel-

filtration on Sephadex G100 the homogenate of a Walker 256 carcinoma and obtained a fraction

with a strong angiogenic activity with a molecular weight of about 10,000 Dalton, consisting of

25% RNA, 10% proteins, 58% carbohydrates, and a lipid residue. Several other low molecular

weight angiogenic factors were isolated from the Walker 256 carcinoma, capable to induce an

angiogenic response in vivo when tested on rabbit cornea or chick embryo chorioallantoic

membrane (CAM), and in vitro on cultured endothelial cells [ 2]. Subsequently, TAF was

extracted from several tumor cell lines.

Starting from the discovery of TAF, other pro-angiogenic molecules have been isolated, namely

basic fibroblast growth factor (bFGF)/fibroblast growth factor-2 (FGF-2), vascular endothelial

growth factor (VEGF)/vascular permeability factor (VPF), and placental growth factor (PlGF).

In the meantime, it has been demonstrated the angiogenic activity of non-classic angiogenic

molecules, including hematopoietic cytokines, namely granulocyte colony stimulating factor (G-
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CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and erythropoietin

(EPO).In this context, Folkman hypothesized that tumor growth is angiogenic-dependent and

that inhibition of angiogenesis could be therapeutic, introducing the term anti-angiogenesis.

Investigations on neoplastic transformation have focused on transformed cells and in the

meantime have addressed the tumor microenvironment and documented its importance in tumor

progression. The pathogenesis of most cancers, in fact, includes complex and mutual interactions

affecting tumor cells, inflammatory cells and various components of the extracellular matrix.

These concepts are now widely accepted and supported by experimental and clinical

studies.Anti-angiogenic agents may be divided in two major groups: indirect agents that block

the expression or the activity of angiogenic molecules, or the expression of their receptors on

endothelial cells, and agents able to directly affect endothelial cell function or survival.Beginning

in the 1980s, the industry began exploiting the field of anti-angiogenesis for creating new

therapeutic molecules in angiogenesis-dependent diseases. Bevacizumab (Avastin) was the first

angiogenesis inhibitor approved by the Food and Drug Adminstration for the treatment of

colorectal cancer in February 2004, administered in combination with irinotecan, 5-fluorouracil

and leucovirin; it was subsequently approved for use, in combination with cytotoxic

chemotherapy, in other cancers, demonstrating an improvement in overall survival or delayed

tumor progression compared to chemotherapy alone.Here, I have summarized the fundamental

contribution of Italian scientists to the discovery of the most important angiogenic factors.

The contribution of Marco Presta to isolation of bFGF/FGF-2

In 1970s, Armelin and Gospodarowicz demonstrated that the bovine pituitary contains a potent

mitogen for fibroblasts, endothelial cells and chondrocytes, with a molecular weight of 14,000-

16,000 Daltons and a basic isoelectric point. This factor was named fibroblast growth factor [ 3–

6].

In 1980s, Shing at the Children’s Hospital in Boston discovered a tumor-derived factor very

similar to the agent discovered by Gospodarowicz, able to bound with such a high affinity to

heparin, with a molecular weight of 14,800, which stimulated the proliferation of capillary

endothelial cells in vitro, and angiogenesis in vivo in the chick CAM assay [ 7, 8]. Amino acid

sequence was determined by Esch et al. [ 9] and it was purified from bovine pituitary and brain [

10].

In 1986, Marco Presta (Figure  1 ), Moscatelli, and Rifkin, working at the New York University,

isolated an angiogenic factor from human placenta and human hepatoma cells, able to stimulate

DNA synthesis, motility, and protease production in capillary endothelial cells and induced

angiogenesis in vivo [ 11, 12]. Amino acid sequence demonstrated that this factor was human

bFGF.

Figure 1



A port trait of Marco Presta.

The contribution of Napoleone Ferrara to isolation of VEGF/VPF

Napoleone Ferrara (Figure  2 ) joined Genentech in 1988 after postdoctoral training at the

University of California at San Francisco, in the Department of Obstetrics, Gynecology, and

Reproductive Sciences in Richard Wiener’s laboratory, where he isolated and cultured follicular

cells, a population of non–hormone-secreting cells from the anterior pituitary of cows [ 13].

Ferrara demonstrated that supernatants from cultures of follicular cells stimulated endothelial

cells proliferation, and supposed that they secreted an angiogenic protein.

Figure 2



A port trait of Napoleone Ferrara.

In 1989, Ferrara and Henzel isolated a diffusible endothelial cell-specific mitogen from medium

conditioned by bovine pituitary follicular cells, which they named VEGF, distinct from bFGF

and indeed did not match any known protein in available databases [ 14].

In 1979, Harold D. Dvorak, working at the Harvard Medical School in Boston, tested cell-free

supernatants from several human and animal tumor cell lines in the permeability Miles assay [

15], and found that they generated an intense blue spot due to extravasated Evans blue, and

called this activity VPF [ 16]. VPF showed a potency some 50,000 times that of histamine [ 17,

18]. The molecular cloning of VEGF and VPF revealed that both activities are embodied in the

same molecule.

In 1992, in a collaborative study between Ferrara and Lewis Williams at the University of

California at San Francisco, VEGFR-1 was shown to be an high-affinity VEGF receptor [ 19].

Moreover, Ferrara demonstrated that VEGFR-1 expression was up-regulated by hypoxia via a

hypoxia-inducible factor (HIF)-1-dependent mechanism [ 20] and that VEGFR-1 binds not only

VEGF-A, but also PlGF [ 21]. In 1996, Ferrara [ 22] and Carmeliet et al. [ 23] demonstrated an

important role of VEGF in embryonic vasculogenesis and angiogenesis.

In 1993, Ferrara demonstrated that anti-VEGF monoclonal antibodies exerted an inhibitory

effect, ranging between 70% and more than 95%, on the growth of tumor cell lines injected

subcutaneously in nude mice [ 24]. These findings provided the first direct demonstration that

inhibition of the action of an endogenous angiogenic factor may result in suppression of tumor

growth in vivo. The first anti-angiogenic agent approved by the Food and Drug Administration

was bevacizumab (Avastin; Genentech), a humanized version [ 25] of an anti-VEGF monoclonal

antibody discovered by Ferrara [ 24]. Bevacizumab bound and neutralized all human VEGF-A

isoforms and bioactive proteolytic fragments, inhibited the growth of human tumor cell lines in

nude mice [ 25].

More recently, Ferrara has demonstrated that related endocrine gland-VEGF (EG-VEGF) and

Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), induce both

angiogenesis and haematopoietic cell mobilization [ 26].



The contribution of Graziella Persico to isolation of PlGF

Maria Graziella Persico (Figure  3 ), working at the Institute of Genetics and Biophysics in

Naples, cloned and purified PlGF and determined its structure [ 27, 28]. PlGF exhibited

remarkable structural similarities to VEGF-A, although PlGF and VEGF-A showed only a 42%

amino acid sequence identity, as well as significant functional differences. Persico demonstrated

also that the human PlGF gene is located on chromosome 14 and consists of seven exons [ 29].

Figure 3

A port trait of Maria Graziella Persico.

PlGF was originally identified in the placenta, where it has been proposed to control trophoblast

growth and differentiation [ 29, 30], playing a role during invasion of the trophoblast into the

maternal decidua [ 31]. Ziche et al. [ 32] demonstrated that PlGF-1 was angiogenic in vivo in the

rabbit cornea and in the chick CAM. PlGF and VEGF were able to induce the formation of new

capillaries approximately 36 h earlier than FGF-2, suggesting a faster recruitment of endothelial

cells.

In 2001, Persico in collaboration with Carmeliet, showed that loss of PlGF does not affect

development, reproduction or postnatal life [ 33]. However, in ischemic conditions such as

myocardial infarction or following ligation of the hind limb artery, PlGF−/− mice showed

reduced angiogenesis and arteriogenesis [ 33]. Administration of recombinant human PlGF was

able to reverse the revascularization defect within the infarcted area. VEGF-A and VEGFR-2

expression remains at comparable levels in PlGF−/− mice, in which the loss of PlGF blocks the

recruitment of macrophages, suggesting that PlGF has a specific role in macrophage mobilization

[ 33].

As concerns the effect of an anti-PlGF antibody, even if evidence has shown that it exerts an

anti-angiogenic action, Bais et al. [ 34] demonstrated that although anti-PlGF treatment inhibited

wound healing, extravasation of tumor cells cells, and growth of a tumor overexpressing the

PlGF receptor (VEGFR-1), neutralization of PlGF using blocking antibodies had no significant

effect on tumor angiogenesis in different animal models.



Angiogenic activity of classical hematopoietic cytokines

G-CSF and GM-CSF can promote proliferation and differentiation of myeloid-committed

progenitors, including eosinophils, basophils, megakaryocytes, and erythroid and dendritic cells

in synergy with other factors.

Federico Bussolino (Figure  4 ), working at the University of Turin, demonstrated for the first

time the presence of specific receptors for G-CSF and GM-CSF on the surface of endothelial

cells [ 35– 38]. Soldi et al. [ 39] demonstrated that endothelial cells express the α and ß subunits

of GM-CSF-receptor and that GM-CSF is able to activate JAK2 [ 40]. Moreover, Bussolino

showed that GM-CSF induces endothelial cells to migrate, proliferate and release plasminogen

activator and is angiogenis in vivo in the rabbit cornea and in the chick CAM assay [ 35– 38, 40,

41]. Bussolino has also demonstrated for the first time the angiogenic activity of hepatocyte

growth factor/scatter factor (HGF/SF), originally identified by Nakamura in 1984 [ 42].

Figure 4

A port trait of Federico Bussolino.

It is to mention the contribution of another scientist working in Turin, Luca Tamagnone, to the

demonstration of the angiogenic activity of semaphorins and plexin [ 43] and that another Italian

scientist, Giovanna Tosato, working in Bethesda, has demonstrated that semaphorin 6A mediated

endothelial cell survival by modulating VEGF signaling [ 44].

Erythropoiesis has been considered the sole physiological action of EPO until EPO and EPO

receptor (EPOR) have been found to be expressed in other sites besides kidney, including bone

marrow macrophages, neurons, astrocytes, microglia and even oligodendrocytes, cervix,

endometrium, ovary, oviduct, and throphoblast cell of the human placenta.

Moreover, EPO induces endothelial cell proliferation and migration [ 45, 46] and stimulates

angiogenesis on rat aortic rings in vitro [ 47]. In 1999, Domenico Ribatti (Figure  5 ), working at

the University of Bari, demonstrated for the first time that recombinant human EPO (rhEPO)

induces a pro-angiogenic phenotype in human endothelial cells [ 48], including increase in cell

proliferation and matrix metalloproteinase-2 production and differentiation into vascular tubes.



Accordingly, endothelial cells expressed EPOR that bound to JAK2 and induced its transient

activation after rhEPO exposure. In the CAM assay, the angiogenic activity of the rhEPO was

similar to that exerted by FGF-2 in the absence of a significant mononuclear cell infiltrate, and

endothelial cells of the CAM expressed EPOR. Overall, these data demonstrated that EPO acts as

a direct angiogenic factor.

Figure 5

A port trait of Domenico Ribatti.

Concluding remarks

Angiogenesis is controlled by the balance between molecules that have positive and negative

regulatory activities and this concept has led to the notion of the angiogenic switch, which

depends on an increased production of one or more positive regulators of angiogenesis [ 49].

Most human tumors arise and remain in situ without angiogenesis for a long time before

switching to an angiogenic phenotype, though a pre-neoplastic stage as occurs in breast and

cervical carcinomas, which becomes neovascularized before the malignant tumor appears.

Activation of the angiogenic switch has been attributed to the synthesis or release of angiogenic

factors, and accordingly to the balance hypothesis, the level of angiogenesis inducers and

inhibitors regulates angiogenesis in physiological conditions. This balance is altered in

pathological conditions, including chronic inflammations and tumors, as a consequence of an

increase bioavailability or activity of the inducer proteins, or reducing the concentrations of

endogenous angiogenesis inhibitors.

Angiogenesis is regulated, under both physiological and pathological conditions, by numerous

“classic” pro-angiogenic factors, including FGF-2, VEGF, and PlGF (Figure  6 ). Moreover,

evidence has been accumulated that in addition to the “classic” factors, many other “non-classic

factors”, including G-CSF, GM-CSF and EPO, play an important role in angiogenesis (Figure  6 )

[ 50]. In this article, I have emphasized the important role played by the Italian scientists in the



course of the last twenty years to the discovery and characterization of these “classic” and “non-

classic” factors.

Figure 6

Cross-talk between the biological activities of the principal angiogenic factors.
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