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Abstract

Angiogenesis is disregulated in many diseased states, most notably in cancer. An emerging
strategy for the development of therapies targeting tumor-associated angiogenesis is to harness
the potential of nanotechnology to improve the pharmacology of chemotherapeutics, including
anti-angiogenic agents. Nanoparticles confer several advantages over that of free drugs,
including their capability to carry high payloads of therapeutic agents, confer increased half-life
and reduced toxicity to the drugs, and provide means for selective targeting of the tumor tissue
and vasculature. The plethora of nanovectors available, in addition to the various methods
available to combine them with anti-angiogenic drugs, allows researchers to fine-tune the
pharmacological profile of the drugs ad infinitum . Use of nanovectors has also opened up novel
avenues for non-invasive imaging of tumor angiogenesis. Herein, we review the types of
nanovector and therapeutic/diagnostic agent combinations used in targeting tumor angiogenesis.

Introduction

Since Judah Folkman emphasized the 'angiogenic switch' hypothesis for tumor progression in
1991, there has been a tremendous surge in targeting angiogenesis for cancer therapeutics [ 1]. In
the past 30 years, many advances have been made in the field, with the elucidation of various
angiogenic molecules that could be targeted to halt angiogenesis, and hence, tumor progression.
Angiogenesis, the formation of new capillaries from preexisting vessels, is crucial for ensuring
normal embryonic vascular development of all vertebrates, as well as regulating physiological
processes such as menses and wound healing in adults [ 2— 4]. Deregulation of angiogenesis
hence underlies pathologies characterized by vessel overgrowth (e.g. cancer) as well as vessel
insufficiency (e.g. cardiovascular disease, CVD) [ 4].

It is now well-established that without angiogenesis, tumors cannot grow more than 2 mm in
diameter [ 5— 7]. Studies in breast cancer patients have showed that angiogenesis positively
correlates with the degree of metastasis, tumor recurrence and shorter survival rates, thus
demonstrating the value of angiogenesis as a prognostic cancer marker [ 1, 8]. Tumor
angiogenesis essentially entails the same sequences of events as physiological angiogenesis,
however, the latter proceeds in an uncontrolled and excessive manner giving rise to leaky and

tortuous vessels that are in a constant state of inflammation [ 6, 9]. This is mainly due by an



upregulation of angiogenic cytokines and growth factors, most notably the vascular endothelial
cell growth factor (VEGF) and Angiopoietin (Ang) families, as well as integrins [ 10— 12].
Integrin a ,f 3is the best-characterized heterodimer that is upregulated in most cancer settings,
both on the vasculature and on the tumor cells themselves [ 13, 14]. It is hence not surprising
that these molecules are often targeted in both experimental and clinical cancer settings.

As such, the first U.S. Food and Drug Administration (FDA) approved anti-angiogenic therapy
was the monoclonal antibody Bevacizumab (Avastin), that targets VEGF proteins overexpressed
on colorectal cancer cells and their vasculature [ 15, 16]. In spite of the clinical success of
Avastin, the majority of other such anti-angiogenic therapeutic agents have yet to pass phase Il
clinical trials, suggesting a new paradigm is essential to target aberrant angiogenesis.

Moving away from conventional chemotherapy

Engineering anti-angiogenic nanoparticles to suit our needs: Playing with
nanovector backbone and drug coupling for therapeutic and imaging
purposes

Since nanoparticles were first proposed by Marty JJ. e al . in 1978 as novel drug-delivery
systems [ 39], their use as anti-cancer agents exploded during the 1980 s. However, only more
recently (1995) have they been used to target angiogenesis [ 40]. Several nanovectors have been
reported thus far in mediating anti-angiogenesis therapy and imaging of the tumor vasculature.
These include an arsenal of synthetic and natural nanoparticles such as polymeric conjugates and
polymeric nanoparticles; liposomes and micelles; synthetic organic nanoparticles such as
dendrimers; carbon-based nanostructures such as carbon nanotubes and polyhydroxylated
fullerenes; inorganic nanoparticles of gold, silver and iron-oxide; quantum dots; viral capsids and
ferritin. The plethora of nanovectors allows researchers to fine-tune the properties of the drugs
depending on their target. Further fine-tuning is also possible depending on the method of drug-
nanovector coupling, thus offering the potential to engineer revolutionary therapeutics in the
field of angiogenesis. Herein, we review the different types of nanovectors that have been studied
to formulate anti-angiogenic agents for imaging and therapeutic purposes, their main
modifications, as well as their advantages and limitations.

New generation research in anti-angiogenesis therapy

Apart from the more conventional approaches of arraying small molecule chemotherapeutic
drugs or antibodies on different synthetic or natural nanovectors to achieve anti-angiogenic
effects, new research reports are emerging that target the molecular mechanism of angiogenesis
by using approaches such as gene silencing and others. In the following sections, we will review
some of these emerging new strategies.

Concluding Remarks and Future Directions

The tumor neovasculature is an attractive target for anti-angiogenic therapy as well as non-
invasive imaging studies. Nanotechnology has emerged as an exciting field in this area of
research due to multiple advantages, including the capacity of nanoparticles to carry multiple
moities of therapeutic and imaging agents, offer longer circulation time and increase the
therapeutic index of chemotherapeutcs, to name a few. Moreover, with the various types of
nanovectors available, many of which are FDA-approved, along with the various methods for
coupling them to drugs and diagnostic agents, there is an endless opportunity to fine-tune
nanotherapeutics depending on the task needed. Clearly, the advent of nanothechnology provides
a huge potential for devising increasingly novel anti-angiogenic therapeutics that can eventually
be translated from bench to bed-side.
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