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Abstract
Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to

carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion

and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further

understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic

therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will

discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized

by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells

and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have

demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with

physiologic angiogenic processes such as wound healing and fertility.

Introduction
Cancer mortality is related to the spread of neoplastic cells to distant loci where the cells, supported by existing blood

vessels and angiogenesis, proliferate and give rise to secondary tumors. Tumor angiogenesis is up-regulated by a number

of conditions including hypoxia, hypoglycemia, mechanical disruption, and genetic and inflammatory alterations [ 1] that

lead to activation of growth factors and pro-angiogenic genes [ 2, 3]. The stringent regulation of angiogenesis in normal

tissues is often lacking in tumor angiogenesis, resulting in immature and leaky tumor vessels. Furthermore, compared to

the tissue-vessel distribution in normal tissue, there is an uneven distribution of vessels within tumors, leading to tumor

hypoxia and inefficient transport of chemotherapeutic drugs. In contrast to normal endothelial cells, in which the vast

majority are quiescent, tumor endothelial cells actively proliferate, driven by hypoxia and increased levels of angiogenic

factors and their cognate receptors. These differences between quiescent and angiogenic endothelial cells resulted in the

first clinical anti-angiogenesis trial on human cancer two decades ago. There are now several anti-angiogenic therapies that

have received FDA approval including sunitinib, sorafenib, and bevacizumab; and with more than 40 anti-angiogenic

drugs in clinical trials [ 4], further advances are anticipated [ 5– 11].

Differences among tumor endothelial cells and non-malignant endothelial cells may not only be quantitative but in some

instances may also be qualitative. With serial analysis of gene expression, investigators compared gene expression from

endothelial cells isolated from normal or malignant tissue, and found that several transcripts (e.g., CD276) were

specifically elevated in the tumor endothelium [ 12, 13]. Although most receptors/proteins that are increased in the tumor

endothelium are also up-regulated in physiologic angiogenic processes, CD276 is not increased in the vessels of wounds or

the corpus luteum [ 13]. Nevertheless, CD276 is not completely specific for the tumor endothelium because its expression

may be induced by cytokines on the cell surfaces of B cells, T cells, and dendritic cells. There are also many

proteins/receptors in tumor endothelial cells that are overexpressed (such as VEGFR2 and survivin) compared to

expression in quiescent endothelial cells. Proteins differentially expressed on tumor endothelial cells or the supporting

matrix are attractive targets for vaccine strategies, with the goal of breaking tolerance to self-antigens.

Targeting the tumor vasculature with vaccines as well as with other immunotherapies may have several potential

advantages over targeting tumor cells. First, tumor endothelial cells are more accessible to the immune system than are

tumor cells at a distance from the vessels. Second, endothelial cells of the tumor are usually more stable genetically than

tumor cells, thereby reducing the risk of resistance developing to immunotherapies [ 14, 15]. Chromosomal abnormalities,

however, have been identified in endothelial cells of solid tumors [ 16, 17], and in glioblastomas, the tumor cells and its

endothelium are derived from common cancer stem-like cells [ 18, 19]. Third, down-regulation of MHC I in tumor cells

occurs less frequently in tumor endothelial cells, thereby leading to a more potent CD8+-mediated response. Fourth, since

inhibition of a single endothelial cell can inhibit up to 100 tumor cells [ 20, 21], immunotherapies directed toward tumor

endothelial cells have the potential of an amplifying inhibitory effect.

As a result of these putative advantages and differentially expressed proteins in the tumor endothelium, a number of

immunotherapeutic strategies have targeted angiogenesis, including monoclonal antibodies, vaccinations, and adjuvant co-
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stimulatory therapies [ 1]. The most successful of these approaches, thus far, has been passive immunotherapy by utilizing

monoclonal antibodies. In 2004, the monoclonal antibody bevacizumab which targets angiogenesis through VEGF

received approval for treatment of colorectal cancer [ 22]. Bevacizumab has also shown efficacy against other cancers

including lung, renal, and breast cancers [ 23, 24]. It is likely that the success and ability of bevacizumab to selectively

target tumor endothelial cells has provided impetus to development of other forms of angiogenic immunotherapies. Several

promising preclinical studies of tumor endothelial vaccines have led to clinical trials that are primarily in phase I. In the

burgeoning field of tumor immunotherapies, we will focus on tumor vaccines that have a major anti-angiogenic

component.

Delivery Systems of Tumor Endothelial Vaccines
As this review will highlight, there are many promising tumor endothelial vaccines with demonstrated efficacy in various

animal models. These vaccines have been delivered by different approaches/vectors, including direct inoculation of

peptides or "naked DNA", gene gun with gold particles, intradermal electroporation, tumor or dendritic cell-based vectors,

and attenuated live bacteria vectors. The particular delivery system for anti-angiogenic vaccine therapy is selected at least

in part based on whether immunizations are comprised of peptides/proteins, DNA, or RNA. For peptide delivery systems,

the peptide can be inoculated directly into the animal model along with an adjuvant, or dendritic cells can be pulsed with

the peptides before their inoculation. For gene therapy vaccine approaches, recombinant DNA may be delivered alone

("naked DNA"), by non-viral and viral carriers, or by eukaryotic and prokaryotic cells. Although delivery systems for

vaccines targeting tumor endothelial cells generally mirror those targeting tumor cells [ 25– 29], there are exceptions such

as the infrequent use of viruses with tumor-endothelial vaccines. Nevertheless, we see no contraindication to using

modified herpes simplex or vaccinia viruses to augment the immune response of endothelial vaccines as in tumor cell

vaccines.

To date, plasmids encoding angiogenic self-antigens are the most common forms of nucleic acid to demonstrate an anti-

angiogenic effect in mouse models. Moreover, bacteria have been the most frequently used delivery system for plasmid-

based vaccines (see reviews of [ 30, 31]). Of the 32 vaccines with specific targets covered in this review, bacteria were the

primary delivery vector in 11 studies, whereas direct inoculation of "naked" plasmid DNA was the primary delivery system

in 6 studies (see Table 1). Several animal studies have demonstrated that orally administered bacteria-based vectors with

attenuated, nonreplicating strains of Listeria or Salmonella have the potential to prevent and treat cancer through inhibition

of angiogenesis [ 32– 35]. Although safety concerns are a factor in considering these bacterial delivery systems, it is of

note that one Salmonella enterica strain has been approved by the FDA for vaccine use [ 30, 36]. Moreover, several

bacteria-based vaccines that had marked anti-angiogenic and anti-tumor activity showed little to no autoimmune response,

at least in the animal studies. Electroporation is also an appealing approach that has been used with DNA or RNA vaccines

that target the tumor endothelium [ 37, 38]. Because of the high number of antigen presenting cells, the skin is a common

route of delivery for varied delivery systems including electroporation. The intradermal DNA vaccination approach

enables long-term immune protection against tumor angiogenesis and growth. Although electroporation has been used less

frequently than direct inoculation of plasmid DNA, it may be more effective. For example, intradermal electroporation of

"naked DNA" gave a much stronger anti-angiogenic and anti-tumor immune response to survivin compared to

intramuscular DNA injection [ 37, 39, 40].

Table 1

Different Strategies Utilized With Tumor Endothelial Vaccines

TARGET
FORM OF

THE
VACCINE

TUMORS Vector/Route MECHANISMS Other
Comments REFERENCE

Endothelial Cell Targets

VEGFR2
mVEGFR2-AP

fusion protein

Melanoma

and lung

carcinoma

DC pulsed
Ab, CTL

Primarily CD8+
P

Li Y et al., 200

[ 45]

Autologous

DNA vaccine-

full-length

mVEGFR2

Melanoma,

colon

carcinoma,

non-small cell

lung

carcinoma,

hepatoma

S. typhimurium
, oral

CTL

Modest delay

in wound

healing P, T

Niethammer A

et al., 2002 [

59]

Xenogeneic

DNA vaccine

Murine

melanoma,

carcinoma,

fibrosarcoma,

lyphoma

"Naked" DNA,

SC

Ab, CTL, CD4+

(Th1)-mediated

Quail VEGFR2

vaccine

Increased

levels of IgG2a

and 2b P, T

Liu, J-Y et al.

2003 [ 130]



TARGET
FORM OF

THE
VACCINE

TUMORS Vector/Route MECHANISMS Other
Comments REFERENCE

Endothelial Cell Targets

Autologous

DNA vaccine-

mVEGFR2

fragment

Breast tumor-

rat Her2
expressing

carcinoma;

murine p53-

deficient

breast

carcinoma

L.
monocytogenes

, oral

CD8+ mediated

Inf-γ Elispot

Encodes

listerolysin-

VEGFR2

fragment; No

effect on

wound healing

or pregnancy P,

T

Seavey MM e

al., 2009 [ 32

Autologous

DNA minigene

Murine breast

and colon

carcinomas

S. typhimurium
, oral

CTL

Encodes H-

2Kd or H-2Dd

restricted

peptides P

Luo Y et al.,

2007 [ 63]

Autologous

DNA minigene

Murine lung,

prostate, and

breast cancers

S. typhimurium
, oral

CTL

Plasmid also

encodes HIV-

TAT peptide P

Zhou H et al.

2005 [ 61]

H-2D -

restricted

Peptides

Murine colon

carcinomas
SC CTL

adjuvant (GM-

CSF, CD40

Ab); T

Dong Y et al.

2006 [ 62]

HLA-A2 or-A24

restricted

hVEGFR2

Peptides

Mouse

melanoma

and colon

carcinomas

ID CTL

HLA-24

restricted

Peptide 169

(RFVPDGNRI)

induced human

PBMC-CTL

lysis of

endothelial

cells

Wada S et al.

2005 [ 43]

VEGFR2

Peptide 169 +

gemcitabine

Pancreatic

cancer (Phase

I)

SC
CTL; Reduced

Treg cells
Adjuvant (IFA)

Miyazawa M. 

al., 2009 [ 66

Xenogeneic

DNA vaccine

Murine breast

and colon

carcinoma

Cationic

liposomes, IV
Ab, CTL

Human

VEGFR2; P, T

Xie K et al.,

2009 [ 65]

Autologous

DNA vaccine

(VEGFR2 fused

with β-defensin

2)

Murine lung

and colon

cancer

Cationic

liposomes, IM
Ab, CTL

Antitumor and

anti-angiogenic

synergy

between

VEGFR2 and

β-defensin-2; P,

T

Wang YS et al

2007 [ 64]

Autologous

DNA vaccine-

Extracellular

Domain

Murine Lung
S. typhimurium

, oral

Ab, CTL CD4+

(Th1), C8+

mediated

Increased

levels of IgG2a

and 2b P

Zuo SG et al.

2010 [ 67]

VEGF
Xenogeneic

DNA vaccine

Fibrosarcoma,

breast cancer,

hepatoma

"Naked" DNA,

IM

Ab CD4+-

mediated

Xenopus

VEGF has

about 75%

homology with

humans and

mice P, T

Wei YQ et al.

2001 [ 58]

Autologous or

xenogeneic

protein

Murine and

human colon

caricinoma;

human

rhadosarcoma

IM Ab;

h- or mVEGF

conjugated to

KLH P

Rad FH et al.

2007 [ 73]

FGFR-1/bFGF
Autologous

bFGF peptide

Murine

melanoma

and lung

carcinoma

Lipid A

containing

liposomes IM

Ab

Effective

vaccine against

the 44 aa

segment of the

heparin binding

domain; No

effect on

wound healing

or pregancy P

Plum SM et al

2000 [ 76] Plu

SM et al., 200

[ 77]

b



TARGET
FORM OF

THE
VACCINE

TUMORS Vector/Route MECHANISMS Other
Comments REFERENCE

Endothelial Cell Targets

Xenogeneic

DNA vaccine

Murine

fibrosarcoma,

hepatoma and

breast cancer

"Naked" DNA,

IM
Ab

FGFR-1 from

Xenopus laevis

Delayed wound

healing P, T

He QM et al.

2003 [ 78]

TEM8

Autologous

TEM8 with rat

Her2 or human

tyrosinase-

related protein1

DNA vaccine

Rat Her-2

expressing

breast

carcinoma;

Murine

melanoma

Gold-particle

gene gun

No Ab or CTL

response with

TEM8 vaccine

alone

Synergy

observed P

Felicetti P et al

2007 [ 82]

Xenogeneic

DNA vaccine

Murine

melanoma

S. typhimurium
oral

CTL;

Human TEM8

No effect on

wound healing

T

Ruan Z et al.

2009 [ 83]

ENDOGLIN

(CD105)

Xenogeneic

protein

Murine lung,

melanoma,

colon

carcinoma,

fibrosarcoma

SC Ab;

Synergy with

cis-platinum;

adjuvant

(alum) P, T

Tan GH et al.

2004 [ 87] Tan

GH et al., 200

[ 88]

ANGIOMOTIN

Xenogeneic

DNA vaccine,

full-length

Her-2

expressing

breast cancer

in transgenic

mice

Electroporation,

TC
Ab

Human angio-

motin and Her-

2; antitumor

synergy when

combined with

Her-2 DNA

vaccine

Holmgren L e

al., 2006 [ 38

TIE2
Xenogeneic

protein vaccine

Murine

hepatomas

and

melanomas

SC Ab
Chicken Tie2 P,

T

Luo Y et al.,

2006 [ 94]

DNA vaccine

encoding HLA-

restricted

peptides

In vitro lysis

of endothelial

cells

expressing

Tie-2; Tumor

response not

tested

Gold-particle

gene gun
CTL

HLA-

A*0201/Kb

transgenic

mice; the

epitope

(FLPATLTMV)

had the highest

CTL response;

Ramage JM e

al., 2004 [ 95

HP59/SP55
Xenogeneic

peptides

Murine lung

carcinoma
Not stated Ab

HP59 and SP55

peptide mixture

P

Fu C et al., 200

[ 96]

Pericyte Targets

HMW-MAA

Xenogeneic

DNA vaccine,

HMW-MAA

fragment

Murine

melanoma,

renal

carcinoma,

Her-2

transgenic

mice

L
monocytogenes

IP

Ab, CTL

HMW-MAA

(2160-2225 aa)

fragment fused

to LLO T

Maciag PC et

al., 2008 [ 33

PDGFRβ
Autologous

DNA vaccine,

full-length

Murine colon,

breast, lung

carcinoma

S. typhimurium
oral

CTL

Also, targets

activated

fibroblasts P, T

Kaplan CD et

al., 2006 [ 34

Combined Targets

SURVIVIN
Xenogeneic

DNA vaccine

Murine

melanoma

Electroporation,

ID
CTL

Human

survivin

vaccine P

Lladser A et al

2010 [ 37]

Survivin/CCL21

DNA vaccine

Murine lung

carcinoma

S. typhimurium
, oral

CTL

Mouse

survivin; no

effect on

wound closure

or fertility P, T

Xiang R et al.

2005 [ 35]



TARGET
FORM OF

THE
VACCINE

TUMORS Vector/Route MECHANISMS Other
Comments REFERENCE

Endothelial Cell Targets

GRP

Recombinant

chimeric HSP-

65 -GRP6

fusion protein

Murine breast

carcinomas
SC Ab, CTL

6 tandem

repeats of

GRP(18-27 aa)

fused to HSP-

65 P, T

Guojun W et a

2008 [ 115]

Chimeric-

HSP65-GRP6

DNA Vaccine

Murine

melanoma

"Naked" DNA,

IM
Ab

chimera also

includes

tetanus toxoid

and HSP70

fragments; P

Fang J et al.,

2009 [ 116]

LEGUMAIN
Allogeneic

DNA vaccine

Murine non-

small lung,

colon and

breast cancers

S. typhimurium
, oral

CTL

Mutant

polyubiquitin

incorporated P,

T

Luo Y et al.,

2006 [ 119]

Autologous

DNA minigene

Murine breast

carcinoma

S. typhimurium
, oral

CTL

Angiogenesis

inhibited more

90%; H-2K

vaccine more

potent than H-

2D P

Lewen S et al

2008 [ 120]

MMP-2

Xenogeneic

full-length

MMP-2 DNA

vaccine

Murine

fibrosarcoma,

hepatoma,

lung

carcinoma

"Naked" DNA,

IM
Ab

Chicken MMP-

2 P, T

Su JM et al.,

2003 [ 123]

β3 Integrin
Xenogeneic β3

DNA vaccine

Murine

fibrosarcoma,

mammary

carcinoma

"Naked" DNA,

IM
Ab

Chicken β3

ligand binding

domain P, T

Lou YY et al.

2002 [ 129]

Abbreviations in table; Ab, antibody response; AP-alkaline phosphatase; CTL, cytotoxic T-lymphocyte response; m,

mouse; h, Human; LLO, listerolysin; P, protective vaccine approach in which pre-immunized mice show anti-tumor

activity; T, therapeutic vaccine approach in which vaccine, administered after tumor inoculation, has anti-tumor efficacy;

keyhole limpet hemocyanin; SC, subcutaneous, ID, intradermal, IM, intramuscular, TC, transcutaneous

Besides tumor cells [ 41], dendritic cells (DC) pulsed with peptide/protein epitopes (or DNA encoding these epitopes)

have also been employed successfully to vaccinate animals against tumor endothelial antigens [ 42, 43]. DC process and

present antigens to T and B cells and produce cytokines and chemokines which in turn activate NK cells [ 44]. DC-based

therapies involve modification with pulsed (loaded) defined peptides, whole protein lysate, and/or transfected DNA or

RNA [ 42, 43]. An interesting anti-cancer and anti-angiogenic approach was the use of a VEGFR2-loaded DCs that led to

greater than 80% reduction in lung metastases of two different tumor models [ 45]. Different forms of nucleic acids have

also been used for angiogenic peptides and proteins. In addition to peptides, proteins, and recombinant DNA, mRNA is

another promising strategy to enhance cellular immunity [ 46]. For example, antitumor synergy was observed when

dendritic cells were transfected with mRNA from two receptors (VEGFR-2 and Tie2) that are highly expressed on tumor

endothelial cells [ 47]. Varying the routes of pulsed DC administration may also affect the efficacy of tumor vaccines.

Pellegatta and colleagues determined that glioblastomas regressed significantly more when mice received both intratumoral

and subcutaneous pulsed DC injections compared to those which received subcutaneous injections [ 48].

Although most authors have not compared different carrier systems with one another, it is evident that the carrier system

and route of administration are critical for the success of the vaccine in animal models and in human clinical trials [ 49].

We have already discussed differences in the immune response to survivin based on whether electroporation or direct

injection of DNA was used. In addition, when Lai et al. compared three different delivery approaches (gene gun with non-

coated particles, gene gun with coated gold particles, and intramuscular injection) for the EGFR plasmid vaccine, the gene-

gun with non-coated particle vaccine had the greatest cytotoxic T-lymphocyte (CTL) response and anti-tumor response [

49]. Interestingly, the CD4+ response and the levels of EGFR-specific antibodies were much greater with the coated gold

particle method. The required robust immune response to overcome self-tolerance will no doubt eliminate several carriers,

and perhaps autoimmunity will eliminate other carriers. Which of the carriers can be translated successfully from the

animal models to humans remains to be determined. The delivery vehicle and the immune-adjuvant will likely be as

important as the selected angiogenic antigen to obtain a successful tumor response in humans.

Approaches for Anti-Angiogenic Vaccines
A goal of vaccination in anti-angiogenic therapies targeting tumors is to break immune tolerance to self-antigens and

induce specific, strong, and persisting immune response leading to eradication of cancer. Complex networks created by



several immune-competent cells such as dendritic cells, B cells, cytotoxic CD8+ T, CD4+ T-helper, and NK cells in

combination with cytokines, chemokines and other immune mediators are required for effective vaccines and immune

reactions against cancer (Figure 1 ). Two anti-angiogenic vaccine approaches have shown promising results in reducing

tumor growth and/or metastases: endothelial cell vaccines that demonstrate antitumor activity and vaccines targeting

specific angiogenic targets. Figure 1

Major mechanistic immune pathways of anti-angiogenic vaccines and their targets. Vaccine antigens are processed by

antigen processing cells such as dendritic cells and presented to T cells. Depending on the antigen, the route of

administration, and the vector, peptide presentation to either major histocompatibility complex (MHC) class I or II occurs,

with subsequent interaction with T-cell receptors on CD4+ or CD8+ cells. Cytotoxic CD8+ T cells recognize and lyse

tumor endothelial cells directly by perforin-mediated and Fas-mediated cytotoxic mechanisms. CD4+ T-helper cells,

through release of different cytokines, can induce Th1 or Th2 responses that stimulate B-cells to produce antibodies and/or

activate NK cells and macrophages to inhibit tumor endothelium. Representative targets related to endothelial and cancer

cells and their environment for anti-angiogenic vaccines are depicted. Reprinted with permission, Cleveland Clinic Center

for Medical Art & Photography © 2010. All Rights Reserved.

I. Endothelial Cell Vaccines

II. Vaccines Expressing Defined Targets

Defined endothelial vaccines are based on specific targets and include peptides and nucleic acids (DNA or RNA) that

encode these peptides (see Table 1, Figure 2 ). Suitable angiogenic targets in tumors may be receptors/markers on

endothelial cells or alternatively, may be growth factors secreted by cells other than endothelial cells. To date, there has

been no target or epitope that is completely specific for tumor endothelial cells. For example, TEM8, one of the more

specific tumor endothelial cell markers identified thus far, was originally found in the tumor vasculature and the developing

embryo, but it has since been found on cell surfaces of melanomas, breast cancers, and dendritic cells. Despite the overlap

in this system, we think that classification of angiogenic vaccines based on preponderance of their targets within most

tumors may be useful. As a result, we have divided tumor endothelial vaccines with defined targets into three classes: 1)

growth factors/receptors or epitopes that are primarily associated with growth of tumor endothelial cells; 2) growth

factors/receptors or epitopes that promote growth of pericytes; and 3) proteins/growth factors/receptors that enhance both

tumor and endothelial cell growth or survival. The growth factors were classified, not on their cells of origin, but on the

location of their receptors.

Figure 2



Tumor Endothelial Vaccines with Defined Targets. Schematic model of a tumor and its angiogenic vessels are shown

with targets of tumor endothelial vaccines. These vaccines may be classified on their specific targets 1) that are

primarily associated with tumor endothelial cells, 2) that promote growth of pericytes, or 3) that enhance both tumor

and endothelial cell growth or survival. Growth factors were classified based on the location of their receptors. M,

Macrophage. Reprinted with permission, Cleveland Clinic Center for Medical Art & Photography © 2011. All Rights

Reserved.

Conclusion
Significant resources including numerous pre-clinical and clinical studies have been devoted to the development of tumor

vaccines. Thus far, these results have progressed and culminated in the approval a vaccine targeting advanced prostate

cancer (Provenge). Although the benefits with this FDA-approved vaccine are modest, further improved vaccine versions

are no doubt on the horizon and will aid with other vaccines approaches, including those against the tumor endothelium.

Compared to tumor vaccines, the number of varied approaches for tumor endothelial vaccines is relatively limited and is

currently restricted to pre-clinical experiments and primarily phase I trials.

As discussed in this review, several studies with tumor endothelial vaccines show anti-tumor efficacy in both transplantable

and transgenic tumor-bearing animal models. Of particular note were the bacteria-based vaccines that showed marked anti-

tumor response with varied anti-angiogenic genes and few if any side effects. Nevertheless, major obstacles still remain,

including identification and validation of specific targets on the tumor endothelium, inhibition of local suppression

mechanisms, and boosting anti-tumor immunity through NK cells [ 132]. Thus far, there have been few data from the

endothelial vaccine studies on the various T-cell subtypes, including regulatory T-cells or myeloid derived suppressor cells

[ 25, 133, 134], and comparison of T-cell subtypes in the tumor and peripheral tissues may be useful in development of

more effective vaccines. Other immune cells such as NK cells have not yet shown a direct role in augmenting the efficacy

of tumor endothelial vaccines [ 64, 87, 94, 130], but more research examining interactions among NK cells, dendritic

cells, and immunomodulatory agents is needed [ 132, 135, 136].

Since tumor angiogenesis is a complex process, targeting a single epitope is unlikely to be successful. In many cases, the

treated tumor adapts and finds alternative mechanisms of tumorigenesis eventually leading to resistance to therapy. Thus,

combinations of anti-angiogenic vaccines with existing chemotherapy or immunomodulatory therapies offer interesting

and exciting possibilities. For example, as discussed previously in this review, combinatory treatments between vaccines

and IL-12, GM-CSF, CCL21, or β-defensins markedly increased the immune response toward tumor endothelial cells [ 39,

41, 62, 64]. Nevertheless, these co-stimulatory therapies have been used sparingly and other commonly used cytokines

such as IL-2, IFN α or β [ 137– 139] have not been co-administered or transfected into immune and/or endothelial cells to

augment vaccine efficacy. Moreover, considerable more research is needed to determine the optimal co-stimulatory therapy

to be administered with the vaccine for the different delivery methods.

Another consideration in developing anti-angiogenic vaccines is their potential for causing complications. Cross-reactivity

between tumor and non-tumor disease tissues due to tumor endothelial vaccine may result in reduced compensatory

biological processes. The classic tumor endothelial target is VEGFR2 up-regulated not only in the endothelial vessels of

tumors but also in healing wounds and hypoxic cardiac tissues. Interestingly, at least with 4 vaccine studies (VEGFR2,

VEGF-A, bFGF, survivin/CCL21) tumor angiogenesis was markedly inhibited, but these vaccines did not interfere with

normal physiologic processes in several studies [ 32, 35, 47, 76, 77]. The mechanism whereby tolerance to self-

angiogenic antigens in tumors but not in normal angiogenic processes is broken remains unknown. It has been suggested

that differences in breaking self-angiogenic antigen tolerance between tumors and normal physiological processes may be

based on the difference of their vascular organization [ 32, 140]; determining whether or not this is the mechanism for this

difference will require further study.

To ensure effective tumor eradication and reduce autoimmune side effects, intensive efforts are still needed to identify

additional targets specific to the tumor endothelium. One such study recently found highly specific and expressed markers

of the tumor endothelium that were not expressed in quiescent blood vessels or physiologic angiogenesis [ 13].

Nevertheless, the efficacy of vaccines against these new markers has not yet been determined. Alternatively, finding tissue-

specific vascular targets (e.g., prostate) may enable development of tumor endothelial vaccines with acceptable side effects

[ 141, 142]. There is also the possibility that tailored endothelial vaccines may be developed based on specific endothelial

epitopes associated with certain tumors [ 143]. As new anti-angiogenic targets are discovered, we anticipate that promising

new therapeutic approaches are on the horizon.

Abbreviations
bFGF:
basic fibroblast growth factor
CTL:
cytotoxic T-lymphocyte
DC:
dendritic cells
FGFR-1:
fibroblast growth factor receptor-1



GRP:
gastrin-releasing peptide
GM-CSF:
granulocyte macrophage-colony stimulating factor
HMW-MAA:
High Molecular Weight-Melanoma Associated Antigen
HUVECs:
human umbilical vein endothelial cells
IFN:
interferon
im:
intramuscular
ip:
intraperioneal
IL:
interleukin
-LLO-HMW-MAA :
that contains and secretes a fragment of HMW-MAA fused to the N-terminal listeriolysin O
MHC I:
Major Histocompatibility Complex I
MMP-2:
Matrix Metalloproteinase-2
NK:
Natural Killer cells
PDGFR-β:
platelet derived growth factor receptor beta
TEM:
tumor endothelial marker
Th:
T helper
VEGF:
vascular endothelial growth factor.
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