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Abstract
Angiogenesis plays a key role in several rheumatic diseases, including rheumatoid arthritis, osteoarthritis,

ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, and vasculitides. An imbalance between

angiogenic inducers and inhibitors seems to be a critical factor in pathogenesis of these diseases. Macrophages

promote angiogenesis during rheumatoid arthritis. In addition, macrophages can produce a variety of pro-

angiogenic factors that have been associated with the angiogenic response occurring during other rheumatic

diseases. Lastly, macrophages could be a target in the treatment of rheumatoid arthritis and other rheumatic

diseases. Nevertheless, further studies are needed to better elucidate the exact role of macrophage in angiogenesis

in these diseases.
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Introduction
Macrophages are a population of cells derived from CD34 positive bone marrow progenitors, which differentiate

to form blood pro-monocytes. Then pro-monocytes develop into monocytes and extravasate into tissues where

they become “resident” tissue macrophages. Even if “resident” macrophages are characterized by different

phenotypes within tissues, from that of Kupferr cells in the liver, microglial cells in the brain, and Langerhans

cells in the skin, they share common aspects, such as their capacity to influence normal cell turnover and tissue

remodeling, to counteract microbial infections, and to facilitate repair in sites of injury [ 1].

Macrophages may be recruited as consequence of any local disturbance of tissue homeostasis, including normal

cell turnover or wounding, infections, immune response and malignancy. After recruitment, macrophages become

“activated macrophages” showing different phenotypes in relation to the nature of the recruiting stimulus and the

location.

As consequence of the variety of secretory products, anatomic diversity and functional heterogeneity,

macrophages are involved in different physiological mechanisms and plays a key role in the aetiology and

pathogenesis of numerous diseases. There are numerous evidences that macrophages are involved in both

physiological and pathological angiogenesis [ 2, 3].

Activated macrophages are generally categorized in two types, M1 (classically activated) and M2 (alternatively

activated) [ 4, 5]. M2 macrophages are further subdivided into M2a (activated by interleukin [IL]-4 or IL-13),

M2b (activated by immune complexes in combination with IL-1β or lipopolysaccharide [LPS] and M2c (activated

by IL-10, transforming growth factor-β [TGFβ] or glucocorticoids). M1 macrophages are able to kill

microorganisms as well as tumor cells and secrete high levels of pro-inflammatory cytokines and tumoricidal

agents, reactive nitrogen and oxygen intermediates , whereas the M2-derived chemokines play a role in the

resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory

cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair [

4, 5].

Considering the increasing interest for the role of angiogenesis in the pathogenesis of rheumatic diseases, such as

rheumatoid arthritis, in this review we will focus on the role of macrophages in angiogenesis associated with

rheumatic diseases.
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Angiogenesis

Angiogenesis is a process characterized by the formation of newly formed capillaries from pre-existing blood

vessels. Angiogenesis is regulated by several angiogenic and antiangiogenic factors. About 30 angiogenic factors

have been described, such as vascular endothelial growth factor (VEGF) family, fibroblast growth factor (FGF)

family, TGF-α and -β), platelet-derived growth factor (PDGF), tumor necrosis factor alpha (TNF-α), angiogenin,

Interleukins (ILs), chemokines and angiopoietins (Ang) [ 6, 7]. On the other hand, several endogenous

antiangiogenic factors have been identified, including angiostatin, endostatin, and thrombospondin (TSP). An

imbalance between these positive and negative factors, with a prevalence of positive regulators, or a

downregulation of the expression of negative regulators, is involved in pathological angiogenesis [ 6].

Physiological angiogenesis is characterized by a cascade of events which contains a number of distinct steps [ 8].

Angiogenic factors induce endothelial cell production of proteolytic enzymes, including matrix metalloproteinases

(MMPs) and plasminogen activators, which are involved in the degradation of the basement membrane and of the

perivascular extracellular matrix. Successively, endothelial cells proliferate and migrate into the perivascular area

forming “primary sprouts”. The subsequent lumenation of these “primary sprouts” is responsible of the formation

of “capillary loops”. At the same time, there is the synthesis of a new basement membrane, which is the final stage

of new vessel formation. Successively, endothelial cells of the “primary sprouts” proliferate and migrate to

generate secondary and further generations of sprouts.

In addition to this model, called “sprouting angiogenesis”, other models for angiogenesis have been described. The

so-called not sprouting angiogenesis or intussusceptions is characterized by a column of interstitial cells which

divides the lumen of a pre-existing vessel in two parts forming two vessels [ 9]. In tumors, other angiogenic

mechanisms have been seen, such as vasculogenic mimicry and the formation of mosaic vessels. In vasculogenic

mimicry, transdifferentiation of cancer cells allowing them to form tubular structures occurs. Mosaic vessels are

characterized by the cooperation between endothelial cells and tumor cells to form new vessels [ 10, 11].

Angiogenesis is involved in the pathogenesis of several diseases, including chronic inflammatory diseases. In fact,

inflammatory infiltrates and newly-formed vessels have been described in chronic inflammatory diseases,

including rheumatoid arthritis and vasculitides. In these pathological conditions, angiogenesis support

inflammatory cells recruitment and determines a compensatory response to ischemia and to the augmented

metabolic activity [ 12, 13]. In fact, angiogenic agents promote endothelial cell expression of adhesion molecules

and inflammatory cytokines and chemokines. VEGF may induce endothelial cells to express adhesion molecules,

such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), allowing

the migration of monocytes and lymphocytes into the extracellular matrix [ 14, 15]. Angiogenic factors, such as

chemokines containing the ELR motif (glutamyl-leucyl-arginyl sequence), and CXC chemokines, are responsible

for inflammatory cells recruitment [ 16, 17]. Moreover, FGF-1 and FGF-2 favor migration of inflammatory cells

via inducing endothelial cell to produce plasminogen activator and collagenase which are responsible for the

degradation of the extracellular matrix [ 18].

It is interesting to note that most angiogenic agents, such as TNF-α, IL-1, IL-6, IL-8, and IL-18 are also

inflammatory factors which are involved in increasing the production of other inflammatory cytokines and cell

adhesion molecules, and in improving matrix cyclooxygenase activity and MMPs [ 19].

MMPs are secreted or membrane-anchored zinc-dependent endopeptidases, which are involved in the degradation

of components of the extracellular matrix. Remodeling of the extracellular matrix by MMPs is important in

angiogenesis. Among the various subtypes of MMPs, MMP-1, MMP-2 and MMP-9 expression levels have been

demonstrated in rheumatoid synovial macrophages [ 20, 21]. Moreover, synovial macrophages also express tissue

inhibitors of MMPs (TIMPs) that contrast the effects of MMPs [ 20].

Members of the Wnt protein family have been shown to regulate several biological processes even if only recently

its role in angiogenesis has been demonstrated [ 22, 23]. By considering that both macrophages and secreted Wnt

proteins regulate angiogenesis, it has been recently hypothesized that Wnt ligands mediate some of the effects that

macrophages have on angiogenesis [ 2]. An augmented activation of Wnt5a has been seen in macrophages

exposed to inflammatory agents, including interferon-γ (IFN-γ) and lipopolysaccharide (LPS) [ 2]. Moreover,

Wnt5a may be responsible for inducing macrophage expression of numerous angiogenic cytokines, includingIL-6,

IL-8 and IL-1β [ 20]. Wnt5a is also involved in inducing endothelial cell production of the monocyte

chemoattractant protein-1 (MCP-1)/CCL2 [ 24].

On the other hand, there are evidences that Wnt proteins may mediate also antiangiogenic effects, probably

because angiogenesis is characterized by different morphological changes required at different stage [ 2, 25].

Thus, it is possible that the same protein may be angiogenic or antiangiogenic factor depending on the stage of

angiogenesis at which it is present [ 2]. Furthermore, Wnt signal may be influenced by other pathways, such as

VEGF, Ang-1 and ang-2, Notch/Dll4, and focal adhesion kinase (FAK) [ 26]. Moreover, differential Wnt receptor

expression has been hypothesized in cells responding to the signal [ 2].

The role of macrophages in angiogenesis in rheumatoid arthritis

Many angiogenic factors have been demonstrated in rheumatoid arthritis synovium, including CXC chemokines

containing the ELR motif [ 27, 28]. They bind to endothelial cells via specific endothelial chemokine receptors,

such as CXCR2. In rheumatoid arthritis, CXCR2 has been demonstrated in synovial-tissue macrophages. CXCR2

is involved in monocyte recruitment from the circulation via binding to MCP-1/CCL2 [ 27, 29, 30]. Furthermore,



CXCR2 recognizes important inflammatory chemokines, including growth-regulated oncogene a (groa)/CXCL1,

IL-8/CXCL8, epithelial-neutrophil activating protein-78 (ENA-78)/CXCL5, connective tissue-activating peptide-

III (CTAP-III)/CXCL7 and granulocyte chemotactic protein 2 (GCP-2)/CXCL6 [ 27, 29, 31]. Moreover, synovial-

tissue macrophages express also CXCR4, the receptor of another important angiogenic chemokine, namely

specific receptor for stromal cell-derived factor-1 (SDF-1)/CXCL12 [ 27, 29].

Macrophage-derived angiogenic chemokines identified in rheumatoid arthritis synovial tissue include ENA-

78/CXCL5 [ 32], a chemokine involved in the chemotaxis of neutrophils [ 33, 34]. Fractalkine/CX3CL1, another

chemokine produced by synovial macrophages, is involved in cell adhesion and in chemotaxis of monocytes and

lymphocytes [ 27, 29, 35]. Groa/CXCL1, CTAP-III/CXCL7, and MCP-1/CCL2 [ 27, 35, 36], and macrophage

inflammatory protein-1α (MIP-1α)/CCL3, responsible of apoptosis inhibition, increases macrophage and

neutrophils infiltration, and induces angiogenesis in synovial tissue [ 37].

In rheumatoid arthritis synovium, macrophages may be activated by T cells via cell-cell contact. Moreover,

numerous soluble mediators are involved in macrophage activation. In fact, immune complexes promote

macrophage activation through the binding to FcγRs. Furthermore, peptidoglycans, LPS and heat-shock proteins

may induce macrophage activation via binding to Toll-like receptors [ 38, 39]. Activated macrophages are

responsible for production of numerous angiogenic cytokines and growth factors. In rheumatoid arthritis synovial

tissue, macrophages release VEGF through TNF-α, TGF-α, and IL-1 stimulation [ 40]. VEGF plays a key role in

induction and amplification of angiogenic response [ 41]. VEGF receptors (VEGFRs) are expressed on

macrophages, including constitutive expression of VEGFR-1, -3, and inducible expression of VEGFR-2. There are

evidences that VEGFRs have a role in the recruitment of macrophages in various inflammatory conditions [ 41–

46]. In rheumatoid arthritis, VEGFR-1 is responsible for macrophage activation and angiogenesis [ 27, 28, 47].

Moreover, VEGFR-1 deficiency results in decreased disease severity and diminished macrophage functions, such

as phagocytosis and the secretion of IL-6 and VEGF-A, in murine models of arthritis [ 47]. Chung et al. [ 48] have

hypothesized that VEGFR-3-specific signaling can induce new blood vessels, through the involvement of

macrophages.

Other important macrophage-derived angiogenic factors are IL-15, IL-17, IL-18, TNF-α, FGF, PDGF, and IL-8

that enhances the expression of leukocyte adhesion molecule [ 27, 28, 33, 49– 51]. IL-15 and IL-18 are involved

in T helper 1 polarization and, as recently demonstrated, IL-18 is also responsible for inducing macrophage

production of MCP-1/CCL2 [ 52]. Among various PDGF isoforms, only PDGF-C and PDGF-D, and not PDGF-A

and PDGF-B, are expressed by synovial fibroblasts and macrophages in rheumatoid arthritis synovial membrane.

Moreover, PDGF-D induces synovial fibroblast proliferation and expression of MMP-1 [ 53]. Carmi et al. [ 54]

have demonstrated that macrophage-derived IL-1β initiates angiogenesis by recruitment of cells of myeloid and

endothelial lineages, especially in hypoxic condition.

In rheumatoid arthritis, hypoxia is induced by the high metabolic demands of synovial inflammation. An increased

number of macrophages has been demonstrated in hypoxic tissues, such as synovial membrane, where hypoxia

induces VEGF production by macrophages and other cells [ 27, 28, 55]. In fact, expression of hypoxia inducible

factor-1α (HIF-1α) by macrophages has been found in rheumatoid synovial membrane, mostly close to the intimal

layer and in the subintimal area [ 56]. The reduced intra-articular PO is responsible for inducing HIF-1α

expression, which, in turn, induces synovial cells, macrophages, and other inflammatory cells to produce VEGF [

57].

Moreover, macrophage migration-inhibitory factor (MIF) is expressed by macrophages in the synovium, where it

is responsible for inducing macrophage production of angiogenic agents, including TNF-α, IL-1, IL-6, IL-

8/CXCL8 and MMPs production [ 21, 39]. In animal models of rheumatoid arthritis, MIF antagonism or

deficiency result in decreased disease severity [ 58].

IL-6, LPS, IL-1β, IFN-α, IFN-γ and TNF-α induce CCAAT/enhancer-binding protein D (CEBPD) expression in

rheumatoid arthritis [ 20, 59– 63]. CEBPD is a member of the family of the basic leucine zipper domain

transcription factors, involved in tissue differentiation, metabolism and immune response. CEBPD activation in

macrophage can promote angiogenesis [ 63], probably via activation of CEBPD-responsive factors, such as

groa/CXCL1 and TNFAIP6 [ 64, 65]. Groa/CXCL1 promotes microvascular endothelial cell tube formation in
vitro [ 63, 65]. TNFAIP6 contains a hyaluronan-binding LINK domain and a CUB (complement subcomponents

C1r/C1s, Uegf, BMP-1) domain. The LINK domain, probably through inhibition of MMPs and aggrecanase

enzymes, has shown chondroprotective effects in various models of inflammation and arthritis [ 63, 64, 66– 68].

Thus, the angiogenic effect of TNFAIP6 is probably related to extracellular matrix remodeling to achieve

regulation of vascular formation [ 63].

On the other hand, macrophages are involved in the production of important antiangiogenic factors, such as IP-

10/CXCL10, Mig/CXCL9, IFN-γ, TIMPs, and TSP2. In rheumatoid arthritis, macrophages produce TSP2 in the

lining layer and in the stroma of diffuse synovitis. On the contrary, macrophages do not produce TSP2 when they

are organized in lymphoid microstructures. In fact, the less aggressive pattern of rheumatoid arthritis is

characterized by diffuse synovitis and absence of organized lymphoid microstructures [ 69, 70]. Moreover,

macrophages may produce IL-27, a cytokine expressed in rheumatoid arthritis synovium [ 70, 71]. Using a murine

model of collagen-induced arthritis (CIA), Pickens et al. [ 72] have demonstrated that IL-27 expression results in

reduced synovial vasculature, probably due to downregulation of IL-17 levels in joints with forced IL-27

expression. IL-27 over-expression is responsible for inhibiting IL-1β and IL-6 production, and this leads to a

reduced T helper-17 activity characterized by decreased IL-17 expression. Low levels of IL-17 are responsible for
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a decreased synovial production of macrophage-derived angiogenic factors, such as groa/CXCL1, ENA-

78/CXCL5, and MCP-1/CCL2.

The role of macrophages in angiogenesis in other rheumatic diseases

Studies on the role of macrophages in angiogenesis in other rheumatic diseases are very scarce. In osteoarthritis,

angiogenesis enhances inflammation and contributes to the severity of the disease. Angiogenesis may be found in

osteochondral junction and synovium from patients with osteoarthritis, where macrophages may contribute to

angiogenesis via VEGF expression [ 73, 74]. A role of VEGF has been described in psoriatic arthritis and

ankylosing spondylitis [ 75]. In systemic sclerosis, VEGF has been detected in sera of patients, even if the role of

angiogenesis is controversial [ 75, 76]. VEGF, epidermal growth factor (EGF), FGF and IL-18 have been found in

sera of patients affected by systemic lupus erythematosus [ 75, 77].

Several studies have demonstrated that angiogenesis plays a key role in the pathogenesis of vasculitides, such as

giant cell arteritis, thromboangiitis obliterans, Kawasaki syndrome, Churg-Strauss syndrome, Wegener

granulomatosis, microscopic polyangiitis, and Behcet disease. The angiogenic response is more evident in small

vessel vasculitides than in medium- and large-vessels vasculitides, since angiogenesis generally involves capillary

and post-capillary venules.

In vasculitides, angiogenesis may represent a compensatory response to ischemia and to increased metabolic

activity principally in acute phase of disease [ 78]. A role for VEGF, FGF-2, TGF-β, PDGF, TNF-α, MCP-1, IL-6

and IL-8 have been described in giant cell arteritis [ 79, 80]. Multinucleated giant cells (MGCs) are specialized

fused cells derived by macrophages, which have been found in media-intima of arterial walls from patients

affected by giant cell arteritis [ 81]. MGCs produce numerous angiogenic factors, such as VEGF and PDGF, and

may be also involved in elastic membranes degradation via MMP-2 production [ 82– 85].

In thromboangiitis obliterans, increased levels of TNF-α have been found in vascular lesions [ 86]. VEGF and

TGF-β overexpression has been found in Kawasaki syndrome [ 75], and TGF-β1 upregulates VEGF expression in

acute phase of disease [ 87].

Increased levels of TGF-β are also been detected in sera of patients affected by ANCA associated vasculitides,

such as Churg-Strauss syndrome, Wegener granulomatosis, and microscopic polyangiitis [ 75, 77].

In Behcet disease, increased IL-8 expression has been found in synovial fluids. Moreover, increased VEGF levels

has been demonstrated in oral aphthous lesions, in the ocular inflammation and in blood serum [ 88– 91].

Macrophage: a therapeutic target in rheumatic diseases

Macrophage-derived chemokine production and pathological angiogenesis in rheumatic diseases may be

suppressed by several antirheumatic drugs, including methotrexate, sulfasalazine, leflunomide, chloroquine, and

anti-TNF agents [ 27– 29]. These compounds may inhibit synovial vessel formation by nonspecifically blocking

the action of angiogenic mediators [ 27, 75]. A more favorable response after intra-articular glucocorticoid

therapy or radiation synovectomy has been described in synovial membrane characterized by elevated synovial

macrophage number [ 92]. Inhibition of TNF-α, IL-1β and IL-6 has been described in LPS stimulated human

monocyte/macrophage after incubation with chloroquine [ 93]. Infliximab, a chimeric monoclonal antibody

directed against TNF-α, in combination with methotrexate, leads to decreased synovial and skin VEGF expression

in patients affected by psoriatic arthritis [ 94]. Moreover, the anti-IL-6 receptor antibody tocilizumab may reduce

VEGF production in rheumatoid arthritis [ 95]. Thalidomide, recently introduced into the treatment of rheumatoid

arthritis and lupus, is responsible for angiogenesis and TNF-α inhibition [ 27, 75].

Moreover, improvement or resolution of arthritis in murine models has been seen after treatment with antibodies to

macrophage-derived angiogenic chemokines, including IL-8, ENA-78/CXCL5, MIP-1α/CCL3, MCP-1/CCL2, and

fractalkine [ 35, 96, 97]. Several oral chemokine receptor antagonists, including CXCR2 and CXCR4 inhibitors,

have been tried in human rheumatoid arthritis as well as in animal models of arthritis [ 98]. Moreover, numerous

chemokine receptor antagonists, including the nonpeptide antagonist of the murine CCR1, called J-113863, have

reduced articular inflammation in murine collagen-induced arthritis, together to a reduction of TNF-α production

by macrophages [ 99]. Encouraging results have been also seen in humans treated with a CCR1 antagonist in a

phase Ib clinical trial [ 100]. Imatinib mesylate, a competitive tyrosine-kinase inhibitor used in the treatment of

numerous hematological malignancies, seems to inhibit macrophage activation, osteoclastogenesis and joint

damage in murine models of collagen-induced arthritis [ 101, 102]. Dehydroxymethylepoxyquinomicin, a newly

developed compound that inhibits nuclear factor κB activation, may inhibit macrophage cytokine production and

suppress murine collagen-induced arthritis [ 103].

HIF-mediated angiogenesis may be a further target. YC-1, a superoxidesensitive stimulator of soluble guanylyl

cyclase initially used as vasodilator in hypertension and thrombosis treatment, also diminishes HIF-1α expression

and activity [ 104, 105]. Paclitaxel, a mitotic inhibitor used in cancer chemotherapy, is also a HIF-1 inhibitor

which has been proposed in rheumatoid arthritis treatment [ 104, 106].

Conclusions



Angiogenesis is emerging key player in pathogenesis of several rheumatic diseases, such as rheumatoid arthritis,

osteoarthritis, ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, and vasculitides. Among

major cell types involved in angiogenesis, macrophages are known to produce numerous angiogenic factors,

including VEGF, FGF, TGF-β, PDGF, TNF-α, MCP-1, IL-6, IL-8, and IL-18 (Figure  1 ). Figure 1

<bold>Chemokines, growth factors and cytokines involved in the angiogenic activity of macrophages.</bold>

Much research has been concentrated on the role of macrophage derived angiogenic factors in rheumatoid arthritis.

Nevertheless, it is conceivable that macrophage may be involved in angiogenesis in other rheumatic diseases

characterized by the presence of angiogenic factors which may be produced by macrophage, although not

exclusively.This suggests that macrophage could be usefully selected as a therapeutic targets of an antiangiogenic

therapy in the treatment of rheumatic diseases, even if further studies are needed to better elucidate the exact role

of macrophage in angiogenesis in these diseases.
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