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Correction

After the publication of this work [ 1] it was brought to our attention that citations in the article

were not correspondingly numbered in the reference list. To avoid confusion, the article is

republished here in its entirety, with the citations referenced correctly.

The Publisher and authors apologize to the readers for the inconvenience caused.

Abstract

The body’s vascular system is thought to have developed in order to supply oxygen and nutrients

to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central

nervous system (CNS) is a major driving force for the ingression and refinement of the complex

vascular bed that serves it. However, even before the establishment of this CNS vascular system,

CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the

fundamental importance of microglia in shaping CNS vasculature during development, and re-

shaping these vessels during pathological insults. In this review, we discuss the origin of CNS

microglia and their localization within the brain based on data obtained in mice. We then review

evidence supporting a functional role of these microglia in developmental angiogenesis.

Although pathologic processes such as CNS ischemia may subvert the developmental functions

of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this

topic to other recent reviews [ 2, 3].

Microglia – specialized macrophages of the CNS
Microglia are specialized macrophages of the central nervous system involved in immune

regulation, tissue development, homeostasis and wound repair. Microglia were first observed by

Virchow in the mid-nineteenth century (see [ 4]), and described in greater detail by Pio del Rio-

Hortega in 1932. In this almost prescient work, del Rio-Hortega described microglia

morphology, plasticity during development and with pathological insult, their cellular origin, and

microglia association with white matter tracts and blood vessels. Despite an immense amount of
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research on microglia origin and function since then, these early views remain surprisingly

accurate.

Microglia derive from primitive yolk sac macrophages

Microglia belong to the mononuclear phagocytic system - a family of cells that includes

committed precursors in the bone marrow, circulating blood monocytes and tissue macrophages

in every organ of the body including the CNS [ 5]. Mononuclear phagocytes are typified by their

ability to ingest large particles; their morphology; their expression of common surface markers

including CD11b, CD68, Colony Stimulating Factor 1 Receptor (CSF1R), chemokine receptor

CXCR3, and plasma membrane glycoprotein F4/80 [ 6]; and their presumed hematopoietic

origin [ 5]. While microglia certainly meet the functional and morphological definition of a

mononuclear phagocyte [ 7– 9], their developmental origin has until recently been less clear.

In mice, hematopoietic stem cells (HSCs) emerge from the dorsal aorto-gonado-mesonephros

(AGM) region 10.5 days after conception (embryonic day (E) 10.5), then migrate to the fetal

liver where they expand and differentiate before definitive hematopoiesis in the spleen and bone

marrow [ 10– 13]. In adult mice, blood monocytes, classical dendritic cells, and certain tissue

macrophages derive from, and are continuously replaced by, bone marrow-derived HSCs. It was

previously thought that microglia arose from hematopoietic precursors in two waves of

recruitment and differentiation [ 14, 15]. However, it is now clear, based on evidence from bird,

fish and mammals, that yolk-sac derived macrophage precursors contribute significantly, if not

entirely, to the brain’s microglia. In avian embryos, analyses using chick-quail transplantation

and parabiosis chimeras show that yolk sac-derived macrophages migrate to and invade the CNS

through the pial basal lamina before and independent of CNS vacularization [ 16, 17].

Subsequent live recordings of cell movements in zebrafish embryos revealed that yolk sac-

derived macrophages migrate through the cephalic mesenchyme before its vascularization to

reach the brain pial surface and the roof of the 4th ventricle, from where they subsequently

invade the neuroepithelium and eventually acquire microglial characteristics [ 18]. Recently, fate

mapping studies in the mouse using genetic lines such as Cx3cr1 -green fluorescent protein

(GFP), Csf1r-GFP , and cell surface markers, show that microglial precursors originate in the

yolk-sac, colonize the surface of the brain between E9.5 and E10.5 (i.e. before the onset of HSC

formation in the AGM region), then appear within the brain neuroepithelium in association with

blood vessels by E10.5 (Figure  1 ) [ 19– 22]. Lineage analysis with tamoxifen-inducible Runx1-
CreERtm [ 19] or Csf1r-CreERtm mice [ 20] suggests that the first wave of yolk-sac derived

microglia is specified before E8.0. Microglia proliferate throughout embryogenesis and self-

renew without significant contribution from the bone marrow in the steady state [ 19, 20, 23].

While bone-marrow derived monocytes may infiltrate the brain parenchyma in conjunction with

irradiation or inflammation [ 24], these cells later disappear, and do not significantly contribute

to the population of resident microglia [ 23].

Figure 1



A) Microglia originate from myeloid precursors in the yolk sac, which migrate into the

neuroepithelium by E10.They associate with radial glia and with blood vessels (also

ingressing into the brain from the pial surface) where they may promote fusion of vascular tip

cells in the periventricular vascular plexus (PVP). Arrow indicates progressive development

from mouse embryonic day (E) 7 to E10. (Modified from [ 24].) B) Bottom: Reduced

vascular branching in the brains of microglia-deficient Pu.1 mouse embryos. Flat mounted

brains from embryonic day 12 mice stained for endothelium (CD31, blue) and microglia

(F4/80, red). Branch points quantified from 4 mutants and controls. Students T Test P <

0.005.

The yolk sac origin of microglia is further supported by elegant experiments done in mice

lacking the transcription factors PU.1 [ 20, 25– 27] or Myb [ 20], and in mice with inactivated
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Csf1 ( CSF1 op/op mice) [ 28], or Csf1r genes [ 29, 30]. PU.1 acts in part by activating

transcription of Csf1r [ 31], which is highly expressed in macrophages and microglia during

development and throughout adult life [ 19]. The major ligands of CSF1R, IL34 and CSF1, are

highly expressed in the brain parenchyma during microglial colonization [ 32]. Mice with

genetic deletion of Pu.1 [ 20] or Csf1r [ 19] have substantially reduced yolk sac macrophages

and microglia, but normal numbers of circulating monocytes [ 19, 20]. Csf1 op/op mice have a

milder reduction in microglia, consistent with an important role for IL34 in microglial

homeostasis [ 29, 32]. Further work with Myb-deficient mice clarified the distinct lineage of

microglia. Genetic loss of Myb blocks the generation of HSCs and their progeny (including

circulating monocytes and granulocytes), but these mice have normal numbers of tissue

macrophages and microglial cells [ 20]. Similarly, myeloid-specific expression of diphtheria

toxin in LysMCre;Rosa26DTA transgenic mice eliminates monocyte-derived macrophages

without effect on resident microglia [ 21]. Taken together, these studies indicate that the large

majority of embryonic and adult brain microglia are derived from early yolk sac precursors.

Patterns of brain colonization by microglia

Once born, yolk-sac derived macrophage precursors migrate into and colonize the whole (mouse)

embryo between E9.5 and E10.5 (Figure  1 ) [ 19, 20]. The first organ to be colonized is the

brain. Subsequent phases of microglial brain colonization follow a stereotyped pattern (see [

33]). Microglia invade the brain through the pial surface, then migrate and proliferate,

populating the brain in a dorsal-to-ventral and rostral-to-caudal gradient. During this time,

microglia associate with radial glia and blood vessels, and are found in close proximity to dying

cells. Eventually, microglia are notably excluded from the neuroepithelium and cortical plate,

and then are widely distributed in the adult brain, except in areas of densely packed neuron cell

bodies such as the pyramidal cell layer. The early association of microglia around blood vessels

has led to the hypothesis that microglia may enter the brain through the developing vasculature.

Indeed, E10.5 Ncx1 embryos [ 34], which lack heartbeat and blood flow, are devoid of

microglia [ 19]. However, it is not clear whether lack of blood flow per se disrupts brain vascular

development in these mutants (they may lack brain vasculature altogether). It is possible that

some microglia migrate along the abluminal surface of pial penetrating vessels, independent of

blood flow, or that a small population of microglia (not detected by flow cytometry in [ 19]

initially invades the brain without contact with vessels [ 21, 35]. Notably, microglia populate the

embryonic retina well before post-natal retinal angiogenesis occurs [ 21, 36, 37], and as

mentioned above appear to colonize zebrafish and chick brains before CNS vascular invasion [

16– 18]. Shortly after entering the neuroepithelium, microglia associate with the developing

blood vessels in the brain and retina [ 16– 18, 22, 38], and microglia and vessels may therefore

directly influence each other’s development, an idea that lends support from ex vivo studies [

37].

Microglia shape the developing CNS vasculature

Because the developing CNS lacks intrinsic vasculature, CNS blood vessel development occurs

exclusively via angiogenesis [ 39– 41]. Attracted by proangiogenic signals, new capillaries

sprout from perineural vessels, and invade the neuroectoderm around E10 in mice. These nascent

capillaries are composed of tip cells at the vascular front, followed by proliferative stalk cells.

Tip cells extend filopodia toward guidance cues such as VEGF-A. VEGF-A induces expression

of the Notch ligand, Dll4, predominately in tip cells. Dll4 then activates Notch in adjacent cells,

which down-regulates VEGF receptors and up-regulates angio-suppressive factors like sFlt1 and

Jagged-1, promoting a stalk cell phenotype (reviewed in [ 41]). The interplay between VEGF

and Notch signaling is highly regulated with additional inputs from other major signaling

pathways including BMPs [ 42, 43], Semaphorins [ 44], and Wnt/βcatenin [ 45, 46]. Additional

signaling pathways that regulate tip cell formation and sprouting include sphingosine-1-

phosphate and its receptor S1pr1 [ 47– 49]. During vascular sprouting, tip cells anastomose with

neighboring tip cells, creating vascular loops. In this way, vessels sprout, extend, branch and
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anastomose, iteratively, toward the center of the neural tube where they establish a temporary

plexus, termed the periventricular vascular plexus (PVP), around the CNS ventricular spaces and

spinal cord’s central canal [ 50– 52]. As the CNS grows and differentiates, these vessels

associate with microglia, pericytes, neuroepithelial radial glia and neuroblasts, and later

astrocytes; CNS vessels are refined, arteries and veins are established, and the mature

neurovascular system takes form.

The retina and optic nerve represent highly specialized extensions of the forebrain. While its

vascularization occurs by angiogenic sprouting similar to the brain, the timing and scaffolds that

guide angiogenesis are partly different [ 53]. During the first week of life, an astrocytic network

arising from the optic nerve invades into the retina in a centrifugal fashion. As the primitive

hyaloid (hv) vessels that supported the embryonic eye development regress, a new primary

vascular plexus extends into the retina, following structural and morphogenic cues provided by

astrocytes and Müller glia. At 7 to 9 days of postnatal life, vessels sprout perpendicularly into

deeper layers of the retina, forming a deep vascular plexus in the outer plexiform retinal layer

(OPL). During the next 3 weeks, retinal vasculature continues to sprout, remodel and

differentiate into arteries and veins and a mature neurovascular network is established by 6

weeks of age.

Microglia influence CNS vascular development

As discussed above, microglia migrate into the CNS and retinal neuroepithelium before vessels

do. Microglia are therefore uniquely positioned to influence the early sprouting, migration,

anastomosis, and refinement of the growing CNS and retinal vascular systems. Studies of

angiogenesis after microglial depletion, or in mice lacking microglia, strongly support this

concept. Checchin et al. [ 54] administered clodronate liposomes either systemically to deplete

macrophages and circulating monocytes, or intravitreally, which depleted retinal microglia

without reducing circulating monocytes. These authors found that reducing retinal microglia

numbers was associated with a decrease in retinal vascular density. Selective depletion of

circulating monocytes had no impact on retinal blood vessels. Importantly, intravitreal co-

administration of microglia with clodronate restored vascularity of the developing retina,

suggesting a microglia-specific effect on retinal vascular development. Similarly, Kubota et al. [

38] found that Csf1 op/op mice, which initially lack retinal microglia, have a significant decrease

in branching of the primary vascular plexus. Also, intra-vitreal administration of CSF1-

neutralizing antibodies, or systemic administration of a CSF1R kinase inhibitor, decreased

microglia numbers with commensurate reductions in vascular branching. Branching in these

mice recovered as development progressed, suggesting that microglia principally effect

developmental vascular remodeling, but do not contribute to maintenance of adult vascular

patterns. Interestingly, they found that Csf1 op/op mice, and mice with pharmacologic microglial

depletion, have comparatively normal numbers of endothelial tip cells and filopodia. This

suggests that microglia facilitate branching anastomosis, but not tip cell extension. In contrast,

Unoki et al. [ 55] found that depletion of microglia using clodronate liposomes increased VEGF-

mediated neovascular sprouts in an ex vivo retina culture model.

The concept that microglia may act to “bridge” vascular sprouts during CNS vascular

development was introduced by the work of Fantin et al. [ 21]. This group studied vascular

ingression and branching in embryonic hindbrains and retinas of mice lacking macrophages and

microglia ( Pu.1 and Csf1 op/op mice). In the hindbrain, microglia numbers were correlated

with numbers of branch points, and were frequently found to be in contact with neighboring

endothelial sprouts. Loss of microglia was associated with a significant decrease in the numbers

of vascular branch points in the brain periventricular vascular plexus, without significant effects

on the numbers of tip cells, filopodia, or radial vessels ingressing from the surface of the brain

(see also Figure  1 ). Selective depletion of circulating monocytes using LysmCre;Rosa26DTA
transgenic mice did not affect hindbrain vascular branching, again suggesting that resident

microglia are principally responsible for facilitated branching. As VEGF is central to tip cell

guidance and vascular branching, and VEGF functions as a macrophage chemoattractant in

tumors and in vitro , the authors evaluated VEGF mRNA levels in the hindbrains of microglia-

deficient embryos and found no difference. They also analyzed microglia numbers and branching

patterns in mice lacking VEGF, or with selective expression of VEGF120 ( vegfa mice,
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which lack heparin binding VEGF isoforms while retaining the diffusible VEGF120 isoform).

These mutant mice revealed abnormalities in hindbrain angiogenesis distinct from those

observed in microglia-deficient mice: vegfa mice had more global vascular deficiencies,

including decreases in the numbers of tip cells and penetrating radial vessels, and vegfa 120/120
and vegfa ;NesCre mice had a more pronounced reduction in vascular branching than

microglia-deficient mice. Microglia numbers were unaffected in these VEGF mutants. These

results imply that microglia are not a significant source of VEGF, that VEGF (unlike CSF1 or

IL34) is not a major chemoattractant or survival cue for microglia, and that the mechanisms of

microglia-facilitated branching may be distinct from, and complimentary to, VEGF-mediated

sprouting.

A recent report from our laboratory confirmed and extended many of these observations [ 37].

We found that microglia-deficient mice ( Csf1 op/op mutants and Pu.1 knockouts) had reduced

numbers of vascular branch points in the retina, and that the angle of filopodia extending from tip

cells was reduced in these mice. We used microglia co-cultured in collagen matrix with mouse

aortic rings to study microglia-vascular interactions more deeply. These studies revealed an

apparent two-way communication between aortic rings and microglia: aortic rings induced the

migration of microglia towards the ring, while microglia significantly increased vascular

branches emanating from the ring. Interestingly, media from cultured microglia added separately

to cultured aortic rings had a similar, albeit less potent, effect on vascular branching. This

suggests microglia-blood vessel contact enhances, but is not necessary to induce branching, and

that microglia may release soluble factors that stimulate sprouting/branching. Addition of soluble

Flt1 (a VEGFR1 ectodomain that traps and neutralizes VEGFA, VEGFB and, placenta growth

factor (PIGF) or VEGFR1 neutralizing antibody to microglia-aortic ring cultures did not

effectively inhibit microglia-induced branching, suggesting that VEGFA and sFlt1 are not major

microglia-derived factors responsible for branching induction.

In contrast to these findings, Stefater et al. [ 56] recently uncovered a mechanism whereby

microglia may suppress angiogenic branching through a Wnt-Flt1 pathway. Here, they found that

microglia associated with the deep retinal vascular plexus specifically express various Wnt

signaling components including Wnt5a and Wnt11 ligands, and Wnt receptors Fzd7, Fzd8 and

Lrp5. Microglia-specific haploinsufficiency of the common Wnt-ligand transporter, Wls ( Wls
;Csf1rCre mice), resulted in increased vascular branching in the deep vascular plexus.

Similarly, Wnt5a and Wnt11 haploinsufficiency resulted in a similar phenotype. Interestingly,

deletion of Lrp5 from microglia had the opposite effect, with a significant reduction in vascular

branching. They found that Wnt5a induced expression of sFlt1, that Wls ;Csf1rCre mice

have reduced expression of sFlt1, and that microglia-specific haploinsufficiency of Flt1

phenocopies the Wls and Wnt5a and Wnt11 mutants. Taken together, their results indicate that

microglia can suppress vascular branching in the deep retinal vascular plexus by secreting Wnt

ligands, which induce, in an autocrine fashion, secretion of the VEGF inhibitory protein, sFlt1.

These results appear to contrast with those reported by Fantin et al., who found no difference in

branch density in the deep retinal vascular plexus in the absence of microglia [ 21], which they

explained was the net outcome of less branching and less pruning. This result pinpoints the

potential complex role of microglial cells in retinal angiogenesis, as regulators of endothelial

sprouting, branch fusion and regression.

The feedback loop between VEGF and Notch involves regulation of both VEGFR-2 and

VEGFR-3, although the individual contribution of each of these VEGF receptors remains unclear

[ 40, 57– 59]. The primary ligands for VEGFR-3, VEGF-C and VEGF-D, are highly expressed

by microglia, and VEGF-C-positive microglia are found near the fusion points of VEGFR-3-

positive vascular sprouts [ 59]. While Vegfd knockout mice have no apparent retinal vascular

phenotype, Vegfc heterozygous mice display delayed retinal vascularization and decreased

branching, but increased vessel sprouting and filopodia [ 59]. Interestingly, this phenotype is

different from mice with loss of function deletions or antibody blockade of VEGFR-3 [ 57, 58].

There are alternative explanations for these discrepancies. One group proposes that VEGFR-3

has both ligand-dependent (and pro-angiogenic) and ligand-independent (anti-angiogenic)

signaling activities [ 59]. Another group suggests that ligand-independent signaling by VEGFR-

3 is pro-angiogenic (when Notch signaling is suppressed) [ 57]. Further experimentation should

clarify the roles of microglia-derived VEGF-C/D-VEGFR3 signaling in vascular development.
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Other groups have recently explored potential roles for Notch signaling in microglia-endothelial

cell interactions. Outtz et al. [ 60] found that Notch signaling is activated in retinal microglia,

which are closely associated with endothelial tip cells expressing the Notch ligand Dll4.

Moreover, genetic deletion of Notch1 in retinal microglia led to a subtle reduction in the

numbers of microglia found at the vascular front. Interestingly, Hoffman et al. [ 61] found that

the Notch ligand, Jagged1, is highly expressed in perivascular cells of the retina, including

microglia. Further studies should evaluate the specific roles of Notch signaling in microglia, and

the impact of this signaling on retinal vascular development.

Outlook

The development of organ-specific vascular beds is dependent upon the close communication

between the vascular cells (endothelial cells and mural cells) on the one hand, and resident cells

of the organ, on the other. The CNS vasculature is in many ways unique in its anatomy and

regulation, and it harbors a highly specific barrier – the blood–brain, or blood-retina, barrier. The

development of the CNS vasculature hence occurs in tight association with the development of

other components of the CNS, and as a result of reciprocal communication between the

endothelial cells and different emerging CNS cell types. This review focuses on the role of

microglial cells – a CNS-specific type of macrophage – and also mentions in passing the

importance of other cells types, such as radial glial cells and astrocytes, as sources of VEGFs,

Wnts and other signaling molecules that control the shape and function of the emerging

vasculature. Although recent studies provide compelling evidence for a role of microglia in

shaping the nascent vascular plexuses in the brain and retina, the molecular mechanisms remain

to be elucidated, and the possibility remains that microglia play a different role at different

locations, for example in the different retinal capillary plexuses. It also remains to be shown

what role, if any, microglia play in vascular homoeostasis in adult physiological and

pathophysiological processes. Microglial cells become activated in conjunction with pathological

insults and disruption of the blood–brain barrier, where they may play protective or pathogenic

roles. These data are not discussed in the present review, which is focused on physiological

development. However, the awareness of microglia as a unique CNS cell type with a distinct

ontogeny and equipped with specific developmental and pathological functions compared to

other glial cell types, has recently increased. Our perspectives on these cells will undoubtedly

grow rapidly in the coming years.
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