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Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial
properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction
manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion
molecules and an impaired vasodilatory function. Increased expression of adhesion molecules
amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both
conduit arteries and resistance arterioles. Age-related impaired function also associates with
phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and
pericytes. Age-related morphological changes are in most of cases organ-specific and include
microvascular wall thickening and collagen deposition that affect the basement membrane, with the
consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide
(NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes
responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory
responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic
attempts have been suggested to improve microvascular function in age-related end-organ failure,
and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative
strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the
most promising results. Research efforts should persist to fully elucidate the biomolecular basis of
age-related microvascular dysfunction in order to better support new therapeutic strategies aimed
to improve quality of life and to reduce morbidity and mortality among the elderly patients.
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Introduction
Vascular ageing is associated with both structural
and functional changes that can take place at the
level of the endothelium, vascular smooth muscle
cells and the extracellular matrix of blood vessels
[1]. Age, hypertension, diabetes, smoking and
plasma low density lipoprotein cholesterol level are
determinant risks of arterial stiffness [2, 3]. A
relevant age-related vascular change is a
progressive myointimal thickening [4, 5]. Similarly
to that observed in large vessels, age-related
increase of microvascular tone leads to a
progressive myogenic hypertrophic remodelling of
small arteries, due to the increased distending

pressure acting perpendicularly on the vascular wall
[6]. Microvascular alterations play an important role
in ageing-associated end-organ damage [7]. In fact,
microcirculation provides the interface for tissue
delivery of oxygen and nutrients, removal of waste
products and carbon dioxide, transvascular
exchange and fluid economy [8]. Therefore, cell
survival depends on adequate microvascular
perfusion [8]. The architecture and the biophysical
behavior of flowing blood strongly influence
microvascular function. Morphologically, the
microcirculation is constituted from vessels
<300 μm in diameter [8]. Therefore, it includes
arterioles, capillaries, and venules (Figure 1).
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Alternatively, a physiological definition based on
vessel function rather than diameter or structure
has been proposed [9]. By this definition, vessels
that respond to an increase of pressure by a
myogenic reduction in lumen diameter are
considered part of the microcirculation [9].
Consequently, besides endothelial cells, also
vascular smooth muscle cells (VSMCs) and
pericytes must be included in the microvascular
cell population. Although the primary function is
to optimise the nutrient and oxygen supply,
microcirculation is relevant in order to avoid large
hydrostatic pressure fluctuations causing
disturbances in capillary exchange and an overall
peripheral vascular resistance [10]. An important

role in regulating tissue fluid balance and in
maintaining osmotic and hydrostatic pressures is
played by the lymphatic system (Figure 1), that
comprises a one-way transport for fluid and
proteins by collecting them from the interstitial
space and returning them to the blood circulation
[11]. This review focuses the attention on the
biomolecular and pathophysiological mechanisms
underlying age-related microvascular alterations
and the importance of new therapies to prevent
end-organ damage associated with microvascular
dysfunction.

Figure 1



Biomolecular mechanisms involved in
age-related microvascular dysfunction

Nitric oxide
In mammals, nitric oxide (NO) is produced by a
family of enzymes, named nitric oxide synthases
(NOSs), that catalyse the production NO from L-
arginine. NO is an important cellular signalling
molecule that regulates vasodilatation, insulin
secretion, airway tone, and peristalsis, and is
involved in angiogenesis and neural development
[29]. The family of enzymes NOS comprises three
isoforms: neuronal NOS (nNOS/NOS1), inducible
NOS (iNOS/NOS2) and endothelial NOS (eNOS/
NOS3) [29] eNOS constitutively produces NO in
endothelial cells and physiologically contributes to
the control of vascular tone. Instead iNOS is
activated by bacterial lipopolysaccharide,
cytokines, and other inflammatory agents,
determining an abnormal production of NO. Due to
its affinity to protein-bound iron, NO can inhibit key
enzymes that contain iron in their catalytic centers.
These include iron–sulfur cluster-dependent
enzymes (complexes I and II) involved in
mitochondrial electron transport, ribonucleotide
reductase (the rate-limiting enzyme in DNA
replication), and cis -aconitase (a key enzyme in the
citric acid cycle) [29].
As discussed above, microvascular dysfunction is
mainly induced by the over-production and release
of O2-, which cause NO breakdown. In fact, NO
inactivation is due to its reaction with O2- to form
the potent oxidant peroxynitrite (ONOO−) [30]. This
compound can cause oxidative damage, nitration,
and S-nitrosylation of biomolecules including
proteins, lipids, and DNA single-strand breakage
following the poly-ADP-ribose polymerase (PARP)
activation [31–33]. The increase of nitration was
demonstrated in the sarcoplasmic reticular Ca-
ATPase isolated from the skeletal muscle of old rats
[34]. The scavenging of NO by O2- was also
demonstrated in coronary microvascular
endothelial cells of old rats, in which the reduction
of eNOS expression was accompanied with an
increased O2- production and attenuated
vasodilator responses [35]. Coronary arterioles of
aged rats displayed an increased iNOS activity and
ONOO− production, as well as a decreased eNOS

expression [36]. The same alterations have been
also described in elderly [36].
Moreover, oxidative stress can convert eNOS from a
NO-producing enzyme to an enzyme that generates
O2-. This process is named eNOS uncoupling.
Mechanisms implicated in eNOS uncoupling include
oxidation of the critical NOS cofactor BH4, depletion
of L-arginine, and accumulation of endogenous
methylarginines [29].

Age-related signal alterations in
vascular cells
It has been demonstrated that endothelin-1 and
angiotensin II (potent vasoconstrictors) pathways
are involved in age-related endothelial oxidative
stress [18]. In particular, ageing induced
endothelin-1 overexpression, resulting in vascular
remodelling and endothelial dysfunction in mice
[37]. In addition, it has been reported the
involvement of endothelin-1 in eNOS
downregulation in pulmonary artery endothelial
cells of fetal porcine [38]. As concerning
angiotensin II, it has been documented that in
ageing its overexpression caused vascular
senescence by mitochondrial and NADPH-
dependent superoxide generation [18]. This
mechanism was attenuated by mitochondrial
electron transport chain or angiotensin type 1
receptor inhibitors [39, 40]. Moreover, the infusion
in rats of angiotensin II induced microvascular
lesions in various vascular beds that resemble
arteriolosclerosis [41]. The blocking of nitric oxide
synthesis also induced renal microvascular disease
[42].
It is well known that angiogenesis and wound
healing are reduced with ageing [43]. In fact,
vascular endothelial growth factor (VEGF)-induced
angiogenesis is attenuated in aged rats and rabbits
[44, 45]. In aged mice and in cultured human
microvascular endothelial cells aged by progressive
passaging, the expression of the tissue inhibitor
of metalloproteinase-2 (TIMP-2) is increased [46],
and correlated with an attenuated capacity of
endothelial cells to degrade extracellular matrix, a
process required for angiogenesis [46].
Taken together these findings suggest the existence
of a complex biomolecular mechanism involved in
age-related vascular dysfunction that leads to

Figure 1 caption
Schematic representation of microcirculation components. The microcirculation is a network of
small blood vessels, including arterioles, venules and capillaries. Blood flows from the arteries
into the arterioles and then pass into the venules across true capillaries or throughfare channels
and metarterioles (arteriovenous bypass). The precapillary sphincter, made of smooth muscle
cells, controls blood flow into the true capillaries. As blood travels through the capillaries, plasma
proteins and fluid enter the interstitial space according to hydrostatic and osmotic pressure
gradients. Most of the fluid is reabsorbed into the post-capillary venules, while a fraction enters to
the lymphatic circulation for its return to the blood circulation.



oxidative stress, vascular remodelling and
endothelial dysfunction. This altered signalling, in
endothelial cells, causes the activation of NF-kB and
a consequent abnormal gene transcription,
including the enhancement of cellular adhesion
molecule expression, such as intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), E-selectin, and inflammatory

cytokine secretion [47–49]. This process determines
the leukocyte recruitment and extravasation as also
demonstrated in the vascular wall of aged rabbits
[50]. A schematic representation of age-related
biomolecular alterations in microcirculation is
reported in Figure 2.

Structural and functional microvascular
alterations involved in ageing

Endothelial cells
As a consequence of the alteration in the expression
and/or activity of eNOS, upregulation of iNOS, and
increased formation of ROS and ONOO−,
endothelial cells undergo to cumulative DNA

damage that promotes senescence and apoptosis
[52]. As described above, the age-related decline
of endothelial function becomes manifest through
a reduced regenerative and angiogenic capacity,
and an altered expression of adhesion molecules
regulating the interaction of circulating factors with
immune system cells [53, 54].
The attenuated capacity of the endothelium to
regenerate is partially a consequence of an

Figure 2

Figure 2 caption
Schematic representation of biomolecular changes in age-related microvascular dysfunction.
Oxidative stress plays a pivotal role in endothelial and myocitic impaired function.



impaired secretion of and/or sensitivity to growth
factors [55]. Recently, the regeneration of the
endothelium by bone marrow-derived circulating
progenitor cells has gained particular attention,
because the number of circulating endothelial
progenitor cells (EPCs) decreases with age and is
thought to reflect the attenuated mobilization of
these cells from the bone marrow [56]. Moreover,
EPCs from older subjects have a reduced capacity
to engraft [57]. Some studies suggest that the
regenerated endothelium is functionally impaired
[57] and exhibits an increased uptake of modified
low-density lipoprotein (LDL) and decreased NO
production [58]. For example, as documented in
aged rats, important structural changes of brain
capillaries were found: thickening of the basal
lamina and the thinning of endothelial cells [59].
Some suggest that this phenomenon is due to a
loss of endothelial cells together with a lengthening
of the remaining ones to allow nutrients to diffuse
[60]. Mophological alteration of aged endothelium
was observed also in sinusoids of human aged liver,
where thickening of the sinusoidal endothelium was
associated with the deposition of basal lamina and
collagen [61]. In the kidney of aged rats the number
of proliferating endothelial cells was decreased
compared with young rats. In addition, VEGF
expression strongly decreased with ageing in the
endothelium of the outer and inner medulla,
suggesting a reduced angiogenic activity [62].

Smooth muscle cells and pericytes
As discussed above, in ageing, upregulation of pro-
oxidants and downregulation of antioxidants results
in an imbalance leading to ROS increase [63–65]
and to the development of vascular dysfunction in
both animal models and in humans [66]. In old
rats, a significant increase in O2- was observed
in the vascular wall [67], and was associated with
an increase in NAD(P)H oxidase activity [36, 64,
68–70]. It has been also reported that Angiotensin
II pathway plays an important role in age-related
smooth muscle cell oxidative stress by eliciting
NAD(P)H oxidase activity [71]. In fact, Angiotensin
II stimulation induced the NAD(P)H oxidase-
dependent O2- production, stimulating NF-κB
signalling in senescent VSMCs [72]. Similarly to
endothelial cells, VSMCs of old rats in response to
cytokines showed higher ICAM-1 level compared
with newborn rats [73]. VSMCs can also induce the
activity of iNOS through the NF-kB pathway under
inflammatory conditions [64], as also reported in
aged Macaca mulatta, rats [64, 74] and mice [75].
As already reported, vascular ageing is also
associated with a progressively reduced NO
bioavailability. Since VSMCs are important targets
for endothelium-derived NO, this reduction causes
an impairment of endothelium-dependent
vasodilation [76]. In addition, the in vitro response
of VSMCs to NO and β-adrenoreceptor stimulation
is decreased by ageing, and such changes may
contribute to impairment of endothelium-
independent vasodilation in the elderly [76, 77].
Consequently to age-related oxidative stress and
impaired signalling transduction, VSMCs undergo to

phenotypic alteration, proliferation, migration,
dedifferentiation and extracellular matrix
remodelling, as reported in coronary resistance
arterioles of old rats [5]. The series of events lead
to increased vessel wall thickness, inflammation,
and vulnerability to the development of vascular
dysfunction [64, 78]. VSMCs lose their specialised
or differentiated properties and become
proliferative and highly motile [5, 79]. Extracellular
matrix reorganization occurs with ageing, such as
collagen increase and elastin fragmentation [80].
These changes in the relative content and
organisation of collagen and elastin result in
increased fibrosis and contribute to the stiffening of
the vascular wall [81]. It may be due to alternative
signal transduction pathways revealed by the
ability of the older cells to respond to inhibitors,
such as transforming growth factor-β1, or to altered
interactions with the extracellular matrix resulting
from age-associated shifts in integrin expression
[54]. Both b1 integrin, adhesive interactions with
fibronectin and α-smooth muscle actin (α-SMA) are
also major players in VSMC stiffening [82].
Pericytes, the mural cells on capillaries, play an
important role in vessel stabilisation, by regulating
endothelial cell proliferation and preventing
capillary withdrawal [83–85]. Alterations in these
cells with ageing also might contribute to the
development of age-related morphological and
physiological abnormalities of the
microvasculature. In fact, microvascular ageing is
characterised by changes in peripheral capillaries,
including vessel broadening, and thickening of the
basement membrane, as well as altered length and
orientation of desmin filaments in pericytes [86].
These changes can determine a reduced
pericyte–endothelial cell contact, destabilisating
capillaries [86]. In addition, a reduction in pericyte
number in aged capillaries was also reported [87].
In the brain capillaries of elderly the decrease in
pericyte coverage was reported [88]. It has been
also documented that in the retina of old rats,
ageing induced the broadening of peripheral
capillaries and terminal venules, as well as
thickening of basement membranes [86]. In the
retina of old rats was reported a shift from a
pericyte phenotype toward an arteriolar smooth
muscle cell–like phenotype. It was associated with
an increase in calponin labelling of arterioles,
thickness of basement membranes, and increased
focal adhesions in arteriolar walls [86]. Moreover,
in skeletal muscle of old mice, the muscular
regenerative capacity of pericytes is limited, and
they produce collagen and contribute to fibrous
tissue depositing [89].

Lymphatic vessel alterations
Lymphatic system begins when the plasma fluid
and proteins, that are forced out by arterial
capillaries into the interstitial space (Figure 1), are
collected into the lymphatic capillaries, which are
freely permeable to macromolecules [90]. So, the
main function of lymphatic system is to maintain
osmotic and hydrostatic pressures within the tissue



space. It consists of capillaries (10-60 μm in
diameter) that drain lymph into the collecting
vessels that contain also smooth muscle. The fluid
pass through several clusters of lymph nodes and
then into larger trunks, which in turn lead into the
ducts, that return lymph back into the bloodstream
[11].
Spontaneous contractions of smooth muscle cells
in the wall of lymphatic vessels are necessary to
maintain effective lymph flow whereas proper
functioning of lymphatic endothelial cells is
necessary to regulate lymphatic contractility [91].
The basic self-regulatory mechanisms controlling
lymph flow in lymphatic vessels is realised through
the sensitivity of their muscle cells to levels of
stretch and of their endothelial cells to levels of the
shear stress [91]. Nitric oxide plays an important
functional role in coordinating the lymphatic
contractile cycle [92] and in fine tuning lymphatic
contractions to different levels of basal luminal flow
[93]. Zhdanov and Zerbino reported ageing-related
changes in morphology of various human lymphatic
networks in the early 1960s [90, 94, 95]. They
observed a reduction in the number of lymphatic
capillaries (nonmuscular initial lymphatics) through
all of the body and the presence of specific
“varicose bulges,” which exist in muscular
lymphatic vessels. It has also been reported that
aged thoracic duct showed signs of lipid
accumulation, thickening, and fibrosis [90, 96].
Recently, some authors reported changes in
orientation and investiture of muscle cells in
mesenteric lymphatic vessels in aged rats [90, 91].
It has been postulated that in elderly the decrease
of accessory muscle elements surrounding
lymphatic valve may limit the ability of lymphatic
vessels to adapt their contractility to various
preload/afterload challenges with subsequent
formation of lymph stasis and potential spread of
pathogens and immune cells in direction opposite
to the direction of the normal lymph flow [90]. In
addition, the thin-walled low muscle cells
investiture zones in aged rats may be transformed
to aneurysm-like formations “varicose bulges”,
which can be ideal places for formation of low-
velocity turbulent lymph flow and accumulation of
various molecules, pathogens, and cancer cells
[90]. Some studies reported a reduced lymph flow
in aged animals in vivo [97, 98]. Ageing severely
altered contractility of the toracic duct through
weakening of lymphatic contractions and complete
depletion of their shear/nitric oxide (NO)-dependent
regulation [98]. It has been demonstrated that
ageing severely altered NO-dependent regulation of
thoracic duct contractions with an impaired eNOS
function and an ageing-associated shear-
independent NO release in the duct due to iNOS
activation [98]. Non-specific nitric oxide synthase
(NOS) blockade restored the contraction [98]. These
findings provided functional consequences of
ageing in lymphatic contractility and the
dysfunctional responses of smooth muscle cells and
endothelium in ageing-induced alterations [98].

Age-related changes of end-organ
microvasculature
As a consequence of the age-related alterations
in the expression and/or activity of eNOS,
upregulation of iNOS, increased formation of ROS
and ONOO-, and extracellular matrix remodelling,
vasodilatory function is impaired and an excessive
capillary pressure with consequent hyperfiltration,
protein leakage, edema formation and tissue
damage occur. In small arteries and arterioles,
which have a relative higher wall thickness,
changes in tone and circumferential shortening
have an enhanced effect on lumen diameter,
resulting in a blood flow decline in many organs [7].
We describe the main alterations that characterise
the age-related end-organ damage.

Brain
Cognitive dysfunction from lower perfusion and
microvascular fibrohyalinosis is the most common
type of microvascular damage in the elderly [99].
Atherosclerosis in elderly people also coincides with
massive microvascular fibrosis, which contributes to
the development of white matter lesions, myelin
rarefaction or demyelination, gliosis, apoptosis and
regressive astrocytic changes [99–101]. Thickening
of small vessels was associated with diffuse white
matter lesions in elderly [102]. Reduced
pericyte–endothelial cell contact also occurs [86].
Brain arteriolosclerosis is a subtype of
cerebrovascular pathology characterised by
concentrically thickened arterioles due to an altered
proliferation of smooth muscle cells and excessive
extracellular matrix deposition [103], as also shown
in our histological study (Figure 3). Cerebral
amyloid angiopathy (CAA) is another microvascular
pathology associated with ageing and results from
deposition of β-amyloid in the media and adventitia
of small arteries and capillaries of the
leptomeninges and cerebral cortex and is a major
cause of lobar intracerebral hemorrhage and
cognitive impairment in the elderly [104]. CAA is
present in nearly all brains with Alzheimer disease,
suggesting a common β-amyloid-based
pathogenesis for these diseases. However, despite
the close molecular relationship between the two
diseases, CAA remains a clinically distinct entity
from Alzheimer disease [104]. The accelerated β-
amyloid vascular deposition in CAA seems to be
caused by a transcriptional deregulation of the
lipoprotein receptor LRP in VSMCs due to
overexpression of the transcription factors: serum
response factor (SRF) and myocardin [105]. In
addition, SRF and myocardin may also regulate
contractile proteins in VSMCs, thus altering normal
vessel physiology [106].

Liver
Age-related changes in the human hepatic
sinusoidal endothelium, termed
pseudocapillarisation, have been recently described
and they contribute to the impairment of hepatic
function [107]. Blood clearance of a variety of waste



macromolecules takes place in liver sinusoidal
endothelial cells (SECs) [108]. These cells are
unique endothelial cells in both their architecture
and their function. The sinusoids are the exchange
vessels of the liver, and the SECs are distinguished
by extensive fenestrations organized into sieve
plates, a lack of a basement membrane, and low
junctional expression of CD31 [108]. The SEC
architecture, including open fenestrations and weak
junctional association between cells, provides a
dynamic filtration system with low perfusion
pressure that enables nutrients and
macromolecular waste to pass freely to
hepatocytes for efficient metabolism [108]. The
maintenance of SEC phenotype is a critical process
that requires both autocrine and paracrine cell
signalling [108]. Recent studies indicate that
fenestrations are maintained by constitutive VEGF-
stimulated NO generation in SECs and surrounding
cells [109]. In response to ageing [110], SECs
dedifferentiate into a more regular endothelium,
hence the term capillarisation or
pseudocapillarisation. The hallmarks of
capillarisation are SEC defenestration, development
of a laminin-rich basement membrane, junctional
expression of CD31 and protein nitration, in a

mechanism involving NAD(P)H oxidase–generated
ROS [108]. In addition, sinusoidal stellate cells are
also induced to overexpress a laminin and collagen
matrix that contributes to fibrosis [111].
In autoptic studies of older human subjects,
independently from the presence of systemic
diseases or hepatic pathologies,
pseudocapillarisation occurs from increased peri-
sinusoidal expression of von Willebrand’s factor,
CD31 and collagen I and IV, resulting in a thickening
and defenestration of the liver sinusoidal
endothelium and deposition of basal lamina in the
extracellular space of Disse [61, 107], as also
shown in our histological study (Figure 4). In
addition, it has been reported an endothelial
upregulation of ICAM-1 [61]. Transmission electron
microscopy study revealed a significant age-related
thickening of the sinusoidal endothelium, with loss
of fenestrations [61]. Loss of fenestrations leads
to impaired transfer of lipoproteins from blood to
hepatocytes. This provides a mechanism for
impaired chylomicron remnant clearance and
postprandial hyperlipidemia associated with old age
[112].

Figure 4



Heart
Ageing is also associated with functional changes of
the coronary microvasculature [113]. An important
mechanism that contribute to the local regulation
of myocardial blood flow is the flow (shear
stress)–induced NO mediated dilatation of small
coronary arteries and arterioles [114]; so ageing,
that impairs NO synthesis/release in the
endothelium (as described above), determines a
vasodilatory dysfunction also in rat coronary
arterioles [115]. It was also reported an increased
breakdown of NO due to an augmented arteriolar
production of O2- [116]. Moreover, in isolated
coronary arterioles of old rats, with an impaired
flow-induced dilatation, O2- and ONOO- production
increased both in endothelial and VSMCs [36]. In
addition, eNOS and SOD activity were impaired,
whereas NAD(P)H oxidase and iNOS were
upregulated. [36]. Aged human and rabbit small
coronary vessels show a marked increase of
myocardial interstitial collagen, with α-SMA and
TGFβ-1 negative fibroblasts and VCAM-1 positive
microvessels without macrophages [117, 118];
these findings support the close link between
endothelial dysfunction and age-related fibrosis
[117, 118]. The impaired coronary endothelial
function may result in adverse clinical events
because of the increased vascular and perivascular
recruitment of neutrophils, macrophages, and
platelets [119]. Taken together, these findings
suggest that arteriolar changes, induced by ageing-
related oxidative stress, impairs the vasoactive
function of the coronary vessels in ageing.

Kidney and skin
With ageing, a degenerative process occurs with
the appearance of glomerular lesions, as a
thickening of the glomerular basement membrane
and Bowman’s capsule [120], parallel to
glomerulosclerosis, interstitial fibrosis and

progressive proteinuria [121]. Biochemical studies
evidenced the age-related increase of collagen and
decrease in glycosaminoglycans, particularly of
heparan sulphate [122]. Ultrastructural studies,
conducted in our laboratory, documented a marked
thickening of the glomerular basement membrane
in old rats (Figure 5A-B). In addition, young rats
perfused with cationized ferritin in vivo showed a
regular distribution of these molecules, along the
internal and external lamina rara of the glomerular
basement membrane (Figure 5C). In the old rats,
ferritin was present only along the internal lamina
rara (Figure 5D), suggesting that the age-related
loss of anionic charged of heparan sulphate
molecules is responsible for age-related proteinuria,
also reported in human. In the kidney of aged rats,
the glomerular and peritubular capillary loss
correlates with alterations in VEGF and TSP-1
expression and also with the development of
glomerulosclerosis and tubulointerstitial fibrosis,
suggesting an impaired angiogenesis associated
with progressive loss in renal microvasculature [62].
The mechanism of capillary loss in aged kidney has
not been fully understood. Angiostatin is a potent
inhibitor of angiogenesis in vivo. In aged rats
angiostatin production is increased, as well as the
activity of cathepsin D, the enzyme for angiostatin
production [123]. In addition, NO availability is
decreased and cathepsin D activated, suggesting
a possible correlation between the increase of
angiostatin production, capillary loss and interstitial
damage in aged rat kidney [123]. NOS inhibition
by L-NAME produced a stronger vasoconstriction in
renal vessels of old compared with young rats [124,
125], suggesting that endogenous NO production
is necessary for the control of renal circulation.
Moreover, post-mortem angiograms and histology
studies, in elderly, showed wall thickening and
narrowing of the vascular lumen of afferent
arterioles, an alteration mainly depending on VSMC
proliferation [126].

Figure 4 caption
Microscopic aspects of human liver pseudocapillarisation. Post-mortem (myocardial acute
infarction) histology studies on paraffin-embedded sections (5 μm thick) of formalin-fixed liver
tissue. Masson's trichrome staining shows the central vein and pericentral hepatocytes of young
(A) and old liver (B) with perisinusoidal collagen deposition (blue staining). CD31 immunostaining
of young (C) and old liver (D) with an increased sinusoidal protein expression. Magnification 20×.



Tubulointerstitial fibrosis, in aged rats, was
characterised by tubular injury and focal tubular cell
proliferation, myofibroblast activation, macrophage
infiltration with increased immunostaining for the
adhesive proteins osteopontin and ICAM-1, and
collagen IV deposition, as well as a decrease in
eNOS expression in peritubular capillaries [127]. In
addition, it has been reported that ageing induced
oxidative stress in kidney and the attenuation of
redox status can ameliorate microvascular function
[128]. Renal oxidative stress was associated with an
increase in ONOO−, NO and ROS levels, as well as
iNOS activity [129]. Treatment with an antioxidant
reduced the age-related renal dysfunction [129].
Moreover, in aged rats, NF-κB activation has been
reported to contribute to the accumulation of

oxidative stress [130].
Structural and functional alterations of the skin
during the ageing process are due to some complex
mechanisms, determined by intrinsic and extrinsic
factors, which act synergistically [131]. Collagen
fibers become thinner and change their aspect; in
the deep dermis they become more fibrous.
Thickened microvessels can be recognised by the
increased intensity of the vascular PAS positive-
diastase resistant staining, and by the perivascular
collagen deposition (Figure 6). Elastic fibers show
the tendency of fragmentation, with a pathological
assembly [131, 132]. With ageing, a progressive
reduction of dermis vasculature is present, due to
a reduction in the number and size of vascular
vessels [131]. Age-related decrease in the number

Figure 5

Figure 5 caption
Ultrastructural aspects of age-related changes in rat kidney microvessels. Glomerular basement
membrane of kidney in young (A) and old rat (B), that shows the characteristic thickening
of capillary wall. Magnification 5000×. Cationized ferritin distribution on glomerular basement
membrane of young (C) and old rat kidney (D). Magnification 30000×.



of dermal blood vessels is suggested to be due to
an impairment of VEGF signalling [133]. In addition,
it has been reported that eNOS activity is required
for full expression of reflex cutaneous vasodilation,
and its impairment in aged skin is associated with

alterations in NO signalling [134], increase of
oxidative stress and upregulation of arginase [135].



Figure 6



Therapeutic targeting of microvascular
ageing
Being assumed that microvascular dysfunction
plays a key role in age-related end-organ failure,
several therapeutic attempts have been suggested.
We summarised the most diffuse anti-
atherosclerotic and anti-ischemic treatments and
more anti-ageing innovative strategies.

Changes of lifestyle, anti-atherosclerotic
and anti-ischemic treatments
Due to a high burden of cardiac risk factors and
coronary atherosclerosis in subjects with angina
and no obstructive coronary artery disease, lifestyle
changes to modify risk factors are fundamental
[136, 137]. Cardiac rehabilitation is recommended
for those patients who have limited physical
activity; increased exercise capacity is related to
the amelioration of atherosclerotic disease
symptoms [138]. Statins may improve endothelial
function by lipid-independent anti-inflammatory
and antioxidant properties and the capacity to
restore microvascular NO availability [139].
Angiotensin-converting enzyme inhibitors as well as
angiotensin-renin blockers [140] have been shown
to improve endothelium-dependent relaxation of
coronary arteries by increasing NO availability
[141]. Upregulation of arginase has emerged as an
important factor contributing to reduce NO
production by competing with endothelial NO
synthase for the common precursor substrate L-
arginine [142]. Arginase inhibitors may induce long-
term improvement of microvascular function and
limitation of myocardial injury following
ischaemia–reperfusion [143].

Antioxidant therapy
Some works focused the attention on antioxidant
agents that can prevent or reduce the progression
of end-organ microvascular dysfunction [144].
Antioxidants and free radical scavengers such as N-
acetyl-cysteine (NAC), ascorbic acid and Propionyl-
L-carnitine (PLC) showed a clinical efficacy in
patients with endothelial dysfunction [145–149].
NAC, a derivative of cysteine, and ascorbic acid
induced beneficial effects on oxidative stress and

vascular dysfunction [145–147]. PLC is an ester of
L-carnitine, that is required for the transport of fatty
acids into the mitochondria [150]. PLC has been
reported to modulate NF-kB activity in vascular cells
[151] and to reduce age-related microvascular
dysfunction and myocardial remodelling, including
adhesion molecule expression [152]. In addition, it
has been reported that PLC counteracts membrane
lipid peroxidation and reduces post-ischemic
endothelial dysfunction [153, 154].
Ascorbate is essential for normal endothelial
function [155] and prevents microvascular
dysfunction and H2O2-mediated injury in cultured
microvascular endothelial cells [144]. Other natural
substances, such as aged garlic extract and
resveratrol, have been documented to minimise
oxidative stress and to stimulate endothelial NO
generation, suggesting that antioxidant regimens
can be efficacy to counteract adverse clinical
effects of age-related microvascular endothelial
dysfunction [74, 75, 156]. In vitro studies suggest
that the molecular mechanisms of resveratrol-
mediated vasoprotection involve NF-kB inhibition,
upregulation of eNOS and antioxidant enzyme
levels, and the prevention of oxidative
stress–induced apoptosis [157, 158]. Resveratrol
supplementation may confer a significant
vasoprotection in elderly humans [63].

Novel anti-inflammatory therapies
Vascular ageing is associated with deregulation of
TNF-α expression [36, 159]. TNF-α is a master
regulator of vascular inflammatory cytokines,
chemokines and adhesion molecules. TNF-α plasma
level increases with ageing and correlates with
morbidity and mortality in the elderly patients [160,
161]. Consequently an anti-TNF-α treatment (i.e.,
with etanercept, which binds and inactivates TNF-
α) may exert vasoprotective effects, including a
reduction of endothelial cell apoptosis and the
downregulation of NAD(P)H oxidases activity [162].
Pharmacological inhibition of the poly(ADP-ribose)
polymerase (PARP) pathway also represents a novel
therapeutic target to improve ageing-associated
cardiovascular dysfunction [163].

Conclusions
Ageing elicits several structural and functional

changes in the microvasculature. Reactive oxygen
species and the concomitant oxidative and

Figure 6 caption
Ageing in skin microcirculation. Histology studies on paraffin-embedded sections (5 μm thick) of
formalin-fixed skin of healthy subjects. Masson's trichrome staining shows collagen distribution
(blue staining), around microvessels, in young (A) and old dermal skin (B). PAS staining shows
hyaline deposits (pink staining), around microvessels, in young (C) and old dermal skin (D).
CD31 immunostaining of young (E) and old dermal skin (F) showing the descrease of capillaries
associated with ageing process. α-SMA immunostaining of young (G) and old dermal skin (H)
showing the proliferation of VSMCs around aged microvessels. Magnification 40×.



nitrosative stress play an important role in the
process of ageing-related microvascular
dysfunction, affecting vascular function as well as
signalling transduction and gene expression.
Although a significant progress has been achieved
in describing the intrinsic age-related alterations
of microvascular function, the age-related decline
in endogenous antioxidant mechanisms,
angiogenesis, endothelium-dependent vasodilation
and microvascular permeability remains to be fully

assessed. Increased knowledge may lead to new
therapies targeting microvascular dysfunction and
to improve clinical outcome. A key observation is
that new therapeutic opportunities aimed to favour
microvascular function are also associated with
ameliorated organ function. An appropriate control
of ageing process, in particular of oxidative stress,
can clarify the efficacy of many pharmacological or
nutritional approaches in order to delay the onset of
age-dependent microvascular disease.
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