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Abstract
Angiogenesis or formation of new blood vessels as a consequence of "sprouting" in a pre-existent
vascular network represents a phenomenon of paramount importance in physiology and pathology.
Although the molecular pathways and factors which modulate angiogenesis are similar regardless
the clinical context, there are numerous aspects related to this process which are incompletely
understood. At the present time, significant research focuses in finding the best method to control
the pro-angiogenic factors as well as anti-angiogenesis since therapy of various medical conditions
requires either stimulation or inhibition of formation of new blood vessels. However, angiogenesis is
different in various vascular systems and organs. In this review, we will present the most promising
factors that interfere with angiogenesis suggesting new or improved therapeutic methods in various
pathological settings.
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Introduction
Blood vessels are formed during gastrulation stage
by fibroblast growth factor (FGF) which acts upon
the mesoderm to create accumulations of
hematopoietic cells and angioblasts called “blood
islands of the yolk sac”. The angioblasts are in fact
primitive endothelial cells. However, vascular
endothelial growth factor (VEGF) promotes further
differentiation of primitive vascular tubules from
these angioblasts [1]. At this stage, the vascular
structures are immature and friable but additional
fibroblast growth factor (FGF)-dependent synthesis
of vascular endothelial growth factor (VEGF) and its
receptor would subsequently drive the formation of
mature blood vessels [2]. This step is characterized
by the acquisition of a mural cell coat which offers
functional stability for the immature embryonic
vessels and concludes the process of angiogenesis
[3, 4]. In several pathological settings, including

in those associated with ischemia, angiogenesis
requires the mobilization of bone marrow-precursor
cells and their differentiation into circulating
endothelial precursor cells. In ischemic lesions, it is
described a direct attachment of these endothelial
precursor cells to form the endothelium of
capillaries located in the ischemic areas.
Subsequently, this leads to the revascularization
of affected tissues [5]. From a mechanistic
perspective, regardless the clinical setting
angiogenesis represents a multi-step process which
begins with dilatation of pre-existing vessels and
a vascular endothelial growth factor (VEGF)-
dependent activation of endothelial cells. The next
step consists of synchronous metalloproteinase-
dependent capillary basement membrane
disassembly and breakage of inter-cellular
endothelial bunches mediated by a plasminogen
activator. This results in a significant increased
vascular permeability. In parallel, additional
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degradation of peri-capillary matrix components,
modulated by the same pro-angiogenic factors acts
in concert with migration and proliferation of
endothelial cells to create endothelial sprouts.
Further organization of these sprouts leads to the
formation of a network of endothelial cords.
Depending on the interaction between various pro-
angiogenic factors the ultimate result will be
represented by vascular remodelling of this network
with the formation of vascular tubular structures.
Maturation of these young vessels involves

recruitment and proliferation of pericytes and
formation of a new basement membrane and some
smooth muscle fibres layer. Meantime, other factors
such as transforming growth factor beta (TGF-b)
can initiate differentiation of microvascular
endothelial cells and pericytes into matrix-
depositing myofibroblasts. Finally, after fusion of
the newly formed vessels, they become functional
and blood-flow is initiated through the vascular
network [6, 7, 8] (Figure 1).

However, despite all of these, the process of
angiogenesis is not completely understood.
Meantime, current therapy of cancer or diabetes
requires new improved anti-angiogenic
pharmacological agents while in other pathological
entities such as stroke an efficient manipulation of
angiogenesis is yet to be implemented in a clinical
setting. In this current article, we will present the
most promising factors which interfere with
angiogenesis in various clinical settings.

a. Stromal Cell-derived Factor 1 (SDF1)
Research studies investigating the angiogenic
modulator role of Stromal Cell-derived Factor 1
(SDF1) have been conducted for quite some time
but unfortunately, its complex actions are still
incompletely understood. Initially, Mirshahi et al.
(2000) have shown in an experimental study that
Stromal Cell-derived Factor 1 (SDF1) acts upon C-
X-C chemokine receptor 4 (CXCR4) and C-X-C Motif
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Chemokine Ligand 12 (CXCL12) and has a
significant pro-angiogenic effect in various
experimental models [9]. The authors have shown
that this factor is pro-angiogenic in vitro in a
tridimensional fibrin gel promoting VEFG synthesis
by endothelial cells. Also, SDF-1 has a pro-
angiogenic effect in vivo in a model of rabbit
corneal pocket [9]. In patients with glioblastoma
multiforme, SDF-1/CXCL12 expression increases
with increasing grade of the tumour and is better
identified in more vascularized areas of the tumour
[10]. It seems that the pro-angiogenic action of
SDF-1 is enhanced by heme-oxygenase 1 (HO-1)
which is locally manufactured by endothelial cells
via protein kinase C zeta-dependent activation.
Animal studies revealed that HO-1 deficient animals
present with abnormal healing of the retinal blood
vessels after SDF-1 administration compared with
those subjects with HO-1 normal profile suggesting
that HO-1 may act as a co-factor in this pathway
[11].
Remarkably, SDF-1 is chemotactic and
chemoattractant for a selected group of bone
marrow cells bearing the C-X-C chemokine receptor
4 (CXCR4) which might be involved in tumour
development as well as revascularization after
ischemia. However, the actual mechanism of
angiogenesis mediated by the interaction between
SDF-1 and CXCR4 positive bone marrow cells is yet
poorly understood. In experimental models of
ischemia, apart from the mobilization of CXCR4
positive bone marrow cells, bone marrow cells that
express VEGF receptors are also activated by SDF-1
[12]. Experiments conducted in patients with
critical leg ischemia have shown that SDF-1
presents with two spliced forms alpha and beta.
However, it seems that the beta variant has a more
potent pro-angiogenic effect but both forms
activate PI3K/Akt and p44/42 kinase [13].
In another pathological setting, SDF-1 partially
counteracts the anti-angiogenic action of LDL.
However, LDL decreases CXCR4 receptors on the
surface of endothelial cells but SDF-1 administered
in parallel with VEGF in Matrigel-based tube

formation assays-HUVECs, induces a full restoration
of angiogenesis as well as a sustained anti-
oxidative effect of endothelial cells suggesting that
other molecular pathways might be involved [14].
Recent studies have also shown that in vitro SDF-1
promotes angiogenesis via activation of CXCR7 in
a dose-dependent manner. Moreover, this
mechanism stimulates the formation of tubules in
HUVECs and in vivo systems. Remarkable, SDF-1/
CXCL12 complex has a unidirectional
chemoattractant action in HUVECs. It seems that
CXCR7 action is facilitated by the PI3K/Akt
phosphorylation pathway suggesting that SDF-1/
CXCR7 represents a complex receptor for Akt-
induced angiogenesis [15].
In vitro studies conducted in endothelial cells by
Ziegler and Hughes (2014) indicate that SDF-1/
CXC12 complex activates mTOR while inhibition of
CXCR4 and mTOR inhibits in vitro 3D angiogenesis
[16]. Therefore, SDF-1 could be a co-factor which
acts in concert with other mediators upon the same
types of receptors. Studies conducted in rats with
experimental carotid artery and intracranial
aneurysms have indicated that SDF-1
administration is associated not only with a pro-
angiogenic effect but also with a deleterious
inflammatory reaction in the walls of both types of
aneurysms which may lead to subsequent rupture
[17]. However, other groups have reported that
SDF-1 alpha overexpression in bone marrow-
derived stromal cells promotes healing in
osteonecrosis of the femoral head as well as
angiogenesis [18].

b. Hypoxia-inducible factors (HIF)
Hypoxia is responsible for the onset of
angiogenesis, through releasing of the pro-
angiogenic hypoxia-inducible transcription factors
HIF1 and HIF2. Particularly, HIF1 induces trans-
activation of gene-promoting angiogenesis and
post-transcriptional stabilization of VEGF mRNA,
followed by up-regulation of VEGF and other pro-
angiogenic substances [20, 21, 22] (Figure 2).



At the level of the central nervous system, it seems
that the most important mechanism modulating the
extent of the vascular network is represented by
an interplay between angiolysis and angiogenesis
induced by HIFs acting in concerts with VEGF as well
as the Ang2/PGE2/COX2 complex [19]. However,
previous studies have shown that HIF1 is activated
in tissue hypoxia and is rapidly degraded during
normal tissue oxygenation [20, 21, 22]. On the
other hand, oxygen excess can inhibit the formation
of new vessels and even their regression, similar
to oxygen-induced retinopathy in premature infants
[23].
Immunohistochemical studies have shown that in
colorectal cancer lymphatic metastasis is correlated
with a high level of HIF-1a [24]. Recently it has been
reported that HIF-1a has a crucial role in starting on
the chain of reactions that lead to carcinogenesis
[25, 26]. This subunit, HIF-1a binds to CXCR4 which
promotes angiogenesis as well as hematopoiesis
and migration of malignant cells [27, 28, 29].

Recent research suggests that the pro-angiogenic
activity of HIF-1a is enhanced by environmental
toxins such as cadmium increasing significantly the
risk of pulmonary adenocarcinoma [30]. Moreover,
in-vitro studies conducted in prostate cancer cells
indicate HIF1 controls transcription of miR-182 a
factor which subsequently acts in concert with HIF
to promote vascular development of prostatic
cancer cells. It suggested that this synergic action
of these two factors would result in an adaptation
to hypoxic stress conditions during prostate cancer
growth [31]. In oral squamous cell carcinoma,
VEGF-A synthesis and subsequent cancer
angiogenesis and development are enhanced by
activation of the αvβ3/FAK/c-Src pathway which
ultimately would stimulate the final molecular
pathway represented by the EGFR/ERK/HIF1-α
complex [32]. A detailed evaluation of tissue from
smokers with a chronic obstructive pulmonary
disease has suggested that an up-regulated HIF-1
may induce lung cancer in a K-ras mutant murine
model [33]. All these data indicate that HIFs are a

Figure 2

Figure 2 caption
Modulation of angiogenesis by hypoxia



potential therapeutic target.
Recently, based on the HIF structure several
antagonists have been developed. Studies
conducted in-vitro in human breast cancer cell line
(MDA-MB-231) have revealed that analogues of the
CJ-3k antagonist have an efficient anti-HIF activity
suggesting that they might be effective as anti-
cancer pharmacological agents [34]. Also, Qin RS
et al. (2018) have successfully used metronomic
therapy (low dose – high frequency) with
Vinorelbine (NVB) administered with a known
angiogenesis inhibitor, Endostar, to treat animal
subjects with non-small cell lung cancer [35]. In the
same study, they observed a significant decrease
of HIF-1 as well as VEGF and CD31 associated with
a decrease in tumour development as assessed by
micro fluorine-18-deoxyglucose PET/computed
tomography (18F-FDG PET/CT) [35]. However, the
authors did not report a reduction in cancer-
associated angiogenesis. This observation would
suggest that while VEGF/HIF-1 are important for
tumour growth the above mentioned metronomic
therapy might have a direct anti-tumoral effect
unrelated to the theoretical anti-angiogenic
potential of the proposed therapy. Alternatively, one
could speculate that the anti-tumoral effect is much
more rapid than the anti-angiogenic effect of
Vinorelbine combined with Endostar [35].

c. Matrix metalloproteinases (MMPs)
Angiogenesis requires degradation of the vascular
basement membrane and extracellular matrix
remodelling to allow endothelial cells to migrate
and invade the surrounding tissues. Matrix
metalloproteinases (MMPs) represent a group of
several proteolytic enzymes which metabolize
various extracellular matrix components including
the basement membranes and the extracellular
matrix facilitating migration of endothelial cells into
surrounding regions [36].
Recent studies conducted in a murine model of
ischemic stroke have reported that increased levels
of matrix metalloproteinases-2 (MMP-2) are
associated with post-stroke angiogenesis [37].
Increased levels of matrix metalloproteinases have
been recorded in patients with traumatic brain
injury. In this context, it seems that matrix
metalloproteinases are responsible for blood-brain
barrier disruption and leakiness [38]. Anyway,
matrix metalloproteinases-2 (MMP-2) and matrix
metalloproteinases-9 (MMP-9) promote retinal
angiogenesis. However, inhibition of both factors
by RNA interference (RNAi) stops the expansion of
human retinal microvascular endothelial cells [39].
In addition, matrix metalloproteinases might also be
involved in the process of diabetic wound healing.
ND-36, an inhibitor of MMP-2 and MMP-9
administered in parallel with MMP 14 induces
healing of chronic diabetic wounds by decreasing
inflammation in association with stimulation of the
angiogenesis process which in turn will promote
wound epithelization. The same results have been
recorded after administration of recombinant MMP8

[40].
However, matrix metalloproteinases-2 (MMP-2) and
matrix metalloproteinases-9 (MMP-9) are inducing
angiogenesis in cancer-promoting metastatic
spread. In vitro studies performed on prostate
cancer cell lines have shown that MMP9
overexpression is also associated with increased
levels of murine double minute 2 (MDM2). The
authors suggest that MDM2 might promote MMP9
driven angiogenesis [41]. Other experiments have
indicated that the level of MMPs is modulated by
α2β1 integrin in breast cancer and endothelial cells
[42]. Webb et al. (2017) have indicated that MMP9
and MMP2 promote the process of vascular
metastasis and tumour growth in retinoblastoma,
an ocular neoplasm described in children. This
suggests that both MMPs are valid therapeutic
targets in retinoblastoma patients [43]. Anyway,
MMP-2 is associated with a low rate of survival in
patients with colorectal cancer. Interestingly, MMPs
may be inhibited by naturally occurring inhibitors.
Allyl isothiocyanate (AITC) has been detected in a
number of vegetables. Its action results in a
decrease in the levels of MMP-2, MMP-9, and
mitogen-activated protein kinases (MAPK) –p-JNK,
p-38 and p-ERK [36]. Recent studies have indicated
that matrix metalloproteinases-9 (MMP-9) is
controlled by mitochondria-associated reactive
oxygen species (mtROS). The mtROC activity is in
turn stimulated by NADPH oxidase 4 (NOX 4) and
overall cancer metastasis is promoted [44].
However, at the present time, new factors are
tested for their anti-MMP action in cancer
metastasis. In this context, eupatilin inhibits
angiogenesis-mediated in human hepatocellular
lines by decreasing the levels not only of MMP-2 but
also VEGF and HIF-1 [45].
Also, MMP2 and MMP9 could be involved in the
etiopathogenesis of preeclampsia. In a murine
model of reduced uterine placental perfusion, it was
discovered that the level of both these two factors
is considerably reduced compared with normal
subjects. Therefore, it was concluded that MMPs
may be responsible for a significant reduction in
uterine and placental vascularization [46].
Overall, these data would suggest that matrix
metalloproteinases would have complex differential
effects in various tissues, but at the present time,
we do not have efficient pharmacological agents to
modulate the activity of MMPs.

d. Angiopoietins/Tie-2
Recent studies suggest that angiopoietins are of
paramount importance in normal angiogenesis [47].
This group includes several factors such as Ang-1,
Ang-2, Ang-3 and Ang-4. Currently, it is known that
Ang-1 which acts upon endothelial cells on Tie-2
which is a receptor tyrosine kinase promoting
endothelial cells stabilization and their survival.
Woolf et al. (2009) suggest that genetically
Ang-1-deficient animals die as a result of vascular
immaturity, while those subjects deficient in Ang-2
die very shortly after birth, displaying anomalies



of retinal vascularization as well as abnormal
lymphatics. These results indicate that
angiopoietins are crucial for vascular differentiation
and maturation [48].
Subsequent to the activation of Tie-2, mesenchymal
cells are recruited to induce pericyte attachment
and ultimately the formation of "non-permeable"
vessels. It was reported that Ang-2 in low doses
inhibits the activation of Tie-2 but high
concentrations of Ang-2 would promote the
activation of Tie-2 [49]. Furthermore, Felcht et al.
(2012) have confirmed that Ang-2 binds to Tie-2
and behaves as a negative modulator of Ang-1/
Tie-2 binding [50]. Therefore, it is considered that
Ang-2 is an Ang-1 antagonist which prevents
pericyte attachment but induces angiogenesis in
the presence of VEGF-A [51]. In patients with
diabetic retinopathy, in concert with VEGF, Ang-2
and Tie-2 promote neovascular development while

breast hyperplasia is associated with an Ang-2 pro-
angiogenic response [52, 53]. Further experiments
conducted in a mice model of myocardial infarction
have shown that myocardial ischemia promotes an
increase of Ang-2 and Tie-2. However if Ang-1 level
is higher than Ang-2 the size of the myocardial
ischemic lesion is smaller than in cases in which
Ang-2 is elevated over Ang-1 [54].
In healing wounds, Ang-1, Ang-2 and Tie-2 are
identified at the level of myofibroblastic cells. Their
level correlates positively with VEGF and new
vessels formation [55]. In some cancers such as
glioma, angiogenesis could be promoted
subsequent to Ang-2 binding to alpha(v)beta(1)
integrin on endothelial cells and activation of focal
adhesion kinase signaling pathway (FAK) as well as
an over-expression of matrix metalloproteinase 2
(MMP2) which is a pro-angiogenic factor [56] (Figure
3).

The Ang-1 / Tie-2 interaction promote the development of metastases in cases of
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neuroendocrine tumours of pancreas and stomach
attracting in close proximity to a tumour a
population of monocytic cells expressing Tie-2. It
seems that these cells enhance both tumour-
associated angiogenesis and regional inflammation
[57]. However, recent in vitro research using
mesothelioma cells over-expressing Ang-1 and
Ang-2 transplanted in rats have revealed that low
Ang-1 level is characteristic for the epithelioid
mesothelioma type while tumours characterized by
both high levels of Ang-1 and Ang-2 are associated
with vascularized lesions [58].
Interestingly, factors targeting Ang-2 in parallel with
VEGF such as ANG2 have been recently developed.
ANG2 reduces vascularization in melanoma,
pancreatic and breast cancer while inducing tumour
necrosis via a CTL-dependent mechanism
promoting perivascular deposition of CD8+
cytotoxic T lymphocytes (CTLs) which express
interferon-γ (IFNγ) as well as programmed cell
death ligand 1 (PD-L1) in a tumour's endothelial
cells. This suggests that the anti-VEGF-a and anti-
Ang2 action of ANG2 could be further enhanced by
PD-1 inhibition [59].

e. Notch signalling
This molecular pathway modulates cellular
development during embryonic development [60].
In animal models, a deficiency of Notch-1
determines an early embryonic death due to
disruption of the angiogenesis process [61]. The
Notch family of proteins includes Notch-1, Notch-2,
Notch-3, and Notch-4 representing a group of
transmembrane heterodynamic receptors that
interact with the ligands located in the cell
membranes: Jagged1, Jagged2, and delta-like
ligands (DII1, DII3, and DII4) [62]. It was suggested
that Notch pathway functionality is modulated by
factors such as multiple- post-synaptic density
protein (MPDZ) by facilitating the interaction
between DLL1/4 with Nectin-2 which is located at
the adherens location. Inhibition of MPDZ activity
is associated with Notch pathway inhibition and
angiogenesis. However, the newly formed blood
vessels are not functional [63].
Recent studies conducted in a transgenic murine
model have revealed that endothelial Notch
modulates the synthesis of local lipase as well as
other factors such as Fabp4, Angptl4 and CD36
which may be regulating the transport of free fatty
acids across the endothelium. It was shown that in
mutant animals with non-functional Notch signalling
there is a significant accumulation of lipids in
plasma [64].
The Dll4/Notch-1 has a crucial role, modulating
VEGF-dependent luteal angiogenesis [65]. Notch1
acts on Hey2 and HeyL and modulate
myofibroblastic transformation of rat hepatic
stellate cells. Also, Notch-1 is expressed by the
synovial tissue enhancing VEGF/Ang-2 angiogenesis
in inflammatory arthritis in response to hypoxia [66,
67, 68]. In addition, Notch- 1 has a role of
paramount importance in pulmonary hypertension,

modulating vascular remodelling [69]. Moreover,
Notch signalling has a significant role in skeletal
development, as well as bone remodelling.
Mutations of Notch-2 are associated with Hajdu
Cheney syndrome characterized by extensive
osteoporosis and fractures. Histological evaluation
in these cases has revealed osteopenia and an
increased number of osteoclasts. Interestingly, all
these abnormalities are corrected by administration
of a γ-secretase inhibitor [70].
Recent research investigating the endothelial cells
have proved in a mice model that Notch pathways
and the process of angiogenesis induced by this
pathway is modulated by the SDF-1-CXCR4 pathway
and the VEGF-A [71]. Notch pathway is inhibited
by DAPT, a γ-secretase inhibitor. This is followed by
significant vascularization of endometriotic lesions
in C57BL/6 mice. However, the DAPT is not
associated with any morphological changes in the
endometriotic lesions suggesting that other
molecular factors/pathways are implicated in the
etiopathogenesis of this lesion [72].
However, a recent clinical study has revealed that
Notch3 and Jagged-1 are significantly increased in
cases of pituitary adenomas but the actual
modulation of a potential molecular chain of events
is not yet fully elucidated [73]. Previously, Dufraine
et al. (2008) have suggested that Notch ligands
might be involved in tumour angiogenesis [74].
Interestingly, blocking DII4 resulted in an increased
vascular development associated with a significant
reduction in proliferation of tumour cells which is
not completely understood Jagged1 in contrast, was
described as facilitating the proliferation of tumour
endothelium [74]. On another perspective, recent
research has indicated that arresting DII4-Ntotch1/
Notch 4 interaction in the setting of the ischemic
retina is very useful as it induces new capillaries
development [75].
All these data would suggest that Notch signalling
could represent a therapeutic target in selected
cases of chronic inflammatory conditions and
cancer.

f. Wnt/b-Catenin
Reis et al. (2012, 2013) suggest that Wnt/b-catenin
complex is important for organ differentiation,
vascular remodelling and angiogenesis [76, 77].
This complex is also involved in bone and cartilage
remodelling, inducing healing of the osseous tissue
[78]. Wnt/b-catenin pathway modulates
endometrial physiological function as well as
carcinogenesis [79]. Recent studies conducted in
rats fed with a high-fat diet have suggested the
Wnt pathway promotes a sustained production of
IL-6, TNF-α, DKK and VEGF which act in concert to
stimulate angiogenesis and atheroma plaque [80].
The Wnt/b-catenin pathway has a crucial role in the
formation of the blood-brain barrier and negative
modulation of cerebral tumoral angiogenesis after
inducing platelet-derived growth factor- beta
(PDGF-B). Interestingly, in the above-mentioned



setting, Notch-1 activates the cascade Wnt/b-
catenin-Dll4/Notch-1 inhibiting process of cancer
associated angiogenesis [76, 77]. Recent reports
indicate that angiogenesis and vascular
differentiation may be modulated by the Wnt
ligands, more specifically by the Wnt 7a-Wnt 7b
complex composed of MMP inhibitor Reck and an
adhesion factor, Gpr124. They modulate not only
brain angiogenesis but also dorsal root ganglia
neurogenesis [81]. Therefore, it is not surprising
that in this context, beta-catenin deletion in
endothelial cells leads to developmental angiogenic
defects in the central nervous system [82, 83, 84].
However, Wnt pathway seems to promote the
process of cancer metastasis and development in
other types of` cancer. Abnormalities related to the
Wnt /b-catenin pathway have been described in
cases of pancreatic cancer resistant to
chemotherapy [85]. The Wnt-ligand is a secreted
glycoprotein that binds to Frizzled receptors, which
triggers a molecular "cascade" resulting in the
displacement of the multifunctional kinase
Glycogen Synthase Kinase (GSK)-3β from the
Adenomatous Polyposis Coli (APC)/Axin/GSK-3β-
complex. However, if Wnt is blocked, β-catenin is
degraded by the APC/Axin/GSK-3β-complex. Also,
phosphorylation of β-catenin by CK1 and GSK-3β
leads to its degradation through the β-TrCP/SKP
complex. This complex has been revealed to be
very important in lung carcinogenesis [86]. In
addition, Linke et al. (2017) have indicated that
in cases of Hodgkin’s lymphoma, Wnt activates
malignant cell chemotaxis towards the blood
vessels as well as the local process of angiogenesis
[87].
Interestingly, the root of Scutellaria baicalensis
Georgi contains a flavonoid named Wogonoside
which in cases of breast cancer has a strong anti-
angiogenic action by inhibiting the Wnt/β-catenin
pathway. In fact, Wogonoside increases the Axin/
Glycogen Synthase Kinase (GSK)-3β complex and
induces phosphorylation of β-catenin subsequent to
an intracellular decrease of Wnt3a [88]. In addition,
Park et al. (2011) have identified a pigment
epithelium-derived factor (PEDF) which would
inhibit Wnt/b-catenin [89]. All these data would
indicate without doubt that the Wnt/b-catenin

molecular pathway represents a potential
therapeutic target of significant clinical importance.

g. Cyclin A1- CCNA1
Cyclin A1-CCNA1 represents a 60 kDa protein which
acts as a cell-cycle modulator synergic with cyclin-
dependent kinases (CDKs), activating complex
enzymes [90]. It also acts during meiosis and during
the progression of the cellular cycle from G1 to S
in somatic cells [91]. Recent studies have reported
that the activity of CCNA1 is dependent on S100A6,
a calcium binding protein that activates the
endothelial cell-cycle senescence and progression.
A decrease in this factor induces a significant
decrease in CCNA1 and abnormalities of cell-cycle
progression [92]. Bauer et al. (2016) have reported
that CCNA1 represents a valid target for heme
oxygenase -1 (HO-1). Overall, this interaction
promotes enhanced angiogenesis [93]. Various
cancers related to epigenetic changes are
characterized by increased levels of methylated
CCNA1. Testicular embryonal carcinomas and
teratomas present with the highest levels of this
factor. A hyper-methylated precursor of CCNA1 is
recovered in the urine of vesical bladder cancer
patients [94, 95]. In addition, increased CCNA1
levels have been reported in head and neck
squamous cell carcinomas, as well as in melanomas
and hepatocellular carcinomas [96, 97]. More
importantly, it seems that CCNA1 acts in concert
with VEGF in breast, prostate and ovarian
carcinogenesis. A high level of CCNA1 suggests an
increased proliferative risk, while an increased
VEGFR2 expression indicates an advanced stage of
cancer [98]. In prostate cancer, CCNA1 promotes
invasiveness by acting upon androgen receptors
and modulating MMP and VEGF expression [99].
Normal breast tissue displays low levels of CCNA1
while breast cancer tissue reveals both an increase
in CCNA1 and VEGF. Remarkably, CCNA1 binds
estrogen receptors (ER) suggesting that breast
cancer progression results from multiple synergic
interactions between various molecular pathways
including modulators of angiogenesis such as VEGF
but also cell cycle factors such as CCNA1 [100]
(Figure 4).



h. Follicle stimulating hormone (FSH)
Radu et al. (2010) have shown that FSH is present in
the vascular network associated with a wide range
of cancers such as breast, colon, pancreas, urinary
bladder, kidney, lung, liver, stomach, testis and
ovary. Also, FSH receptors have been identified in
both benign and malignant tumours of adrenal
gland [101, 102].
FSH receptors are also seen in metastases [103].
Until recently it was accepted that there are no
FSH receptors in the normal tissues except in the
ovarian and testicular parenchyma, more exactly in
the granulosa and the Sertoli cell [104]. However,
recent clinical studies have reported that FSH
receptors are also located in the endothelial cells
of the cervix, endometrium, myometrium including
in the endometrial and cervical glands and
myometrial muscle fibres. In addition, in pregnant
women, FSH receptors are seen on the endothelial
cells associated with umbilical cord and in both the
fetal and maternal placenta. However, the role of

these receptors in these locations is not known
[105].
Regarding the pro-angiogenic role of FSH, it was
reported that binding to its receptor in the ovarian
granulosa cells determines an up-surge of hypoxia-
inducible factor 1 alpha (HIF-1 alpha), which
subsequently determines an increase of vascular
endothelial growth factor (VEGF) which is known
to promote a rapid angiogenesis which has a
significant role in further follicular development
[106, 107]. Experimentally, it has been proven that
FSH treatment during ovarian cryopreservation
promotes ovarian survival by neo-angiogenesis
subsequent to a sustained increase in VEGF/
VEGFR2 [108]. In avian ovarian follicles, FSH
induces a robust VEGF-A angiogenesis after prior
induction of Annexin A2 (ANXA2) which is a calcium-
dependent, phospholipid-binding protein [109].
Studies completed recently using ovarian epithelial
cancer cells indicated that FSH increases the VEGF
expression also via production of reactive oxygen

Figure 4

Figure 4 caption
Cyclin A1: mechanism of action



species (ROS) which in a second stage would turn
on the Nrf2 pathway [110]. However, these findings
have not been verified in a clinical setting but it
is suggested that FSH exerts its positive effect on
VEGF over-expression and associated angiogenesis
by interacting with a variety of factors and
molecular pathways. Overall, these data suggest
that FSH could be a significant therapeutic target.

i. PTEN/PI3K–AKT complex
In general, PI3K–AKT induces angiogenesis while
overproduction of PTEN inhibits angiogenesis in the
chicken embryo [111]. It seems that stimulation of
PI3K/AKT pathway and simultaneous suppression of
PTEN has a beneficial effect protecting the heart
from reperfusion injury [112].
PTEN (phosphatase and tensin homolog deleted on
chromosome 10), an antagonist of PI3K-AKT, is a
tumour suppressor, which is altered in several
human cancers [113]. In addition, PTEN represents
a target for miR-19a, a member of the microRNA
clusters which modulates angiogenesis. Down-
regulation of PTEN by miR-19a is followed by
activation of AKT/GSK pathway and glycogen
synthesis in hepatic cells [114]. Recent scientific
reports suggest that in endothelial cells, PTEN is
down-regulated by urokinase receptor (uPAR/
CD87). Interestingly, PTEN down-regulation is
associated with an increased density of newly
formed blood vessels [115]. However, studies
conducted in a PTEN deficient mouse model of
prostate cancer have revealed that KLF5, a recently
described transcriptional factor, induces cancer
development subsequent to an increase in HIF1α
and inhibition of PI3K-AKT pathway [116].
The PI3K-AKT complex has a crucial role in
modulating cell proliferation and growth as well as
cellular survival initiated by other growth factors.
Mice deficient in p110a catalytic subunit of PI3K
have more vascular defects including dilated
cerebral vessels, anomalies endocardium
development as well as a significant decrease in
Tie-2 protein level. More importantly, in p110g
deficient mice, the vascular permeability induced
by RAS and VEGF is significantly decreased. This
suggests that PI3K has a crucial role in maintaining
an adequate vascular permeability [117].
Some authors believe that PI3K is one of the most
important molecular pathways implicated in
carcinogenesis [118]. Erdreich-Epstein et al. (2016)
have reported in a murine model of neuroblastoma
that deletion of one allele of PTEN stimulates
malignant development. This supports further
assessment of factors targeting this pathway such
as SF1126 as chemotherapeutic agents [119].
Remarkably, PI3K is sufficient by itself to induce
angiogenesis partly by increasing the expression
of HIF-1 and VEGF. A number of studies have
demonstrated a modulation by
PI3KofHIF-1andVEGFexpression in vascular
endothelial cells, several types of neoplastic cells,
smooth muscle cells, osteoblasts and mast cells

[120]. However, PI3K/AKT interacts with other
molecular factors and pathways to promote
angiogenesis. Immuno-histochemical studies
conducted in patients with gastric cancer have
indicated that PI3K/AKT is simultaneously activated
with mTOR molecular pathway while the PTEN is
downregulated [121].

j. B-Cell-specific Moloney Murine
Leukemia Virus Integration Site 1
(Bmi-1)
B-cell-specific Moloney murine leukaemia virus
Integration site1 (Bmi-1) represents a member of
gene polycomb family. It was reported to have a
significant etiopathogenic role in breast cancer,
acute myeloid leukaemia as well as colorectal, and
lung cancer, ovarian and nasopharyngeal tumours.
In all these cancers, Bmi-1promotes malignant cell
proliferation and progression inhibiting apoptosis
and cellular senescence [122, 123, 124].
Bmi-1 interacts with numerous molecular pathways
implicated in cancer such as inhibition of p16/Rb
and p19ARF/MDM2/p53 as well as Hedgehog
pathway. It stabilizes the snail factor which is a
transcription repressor which subsequently
promotes epithelial-mesenchymal transition
through modulation of PI3K/AKT/GSK-3b [125, 126].
Bmi-1 promotes hepatic angiogenesis and
modulates the NF-kB/VEGF-C which is very
important in cancer growth and development,
particularly in gliomas. Other studies have
suggested that aggressive gliomas are determined
after activation by Bmi-1 of NF-kappaB/MMP-9
molecular pathway [127, 128]. In head and neck
squamous cell carcinomas, cisplatin administration
promotes Bmi-1 synthesis and cancer stem cells
formation. This could represent a potential
mechanism of cancer resistance to cisplatin therapy
[129]. These results would suggest that Bmi-1 could
represent a potential therapeutic target in selected
cases of cancer.

k. Galectins
Recent research suggests that Galectins are a group
of pro-angiogenic molecules with a significant role
in a multitude of pathological conditions including
cancer and pre-eclampsia [130]. Therefore,
numerous studies have been conducted to assess
the potential of these molecules as therapeutic
targets. In this context, Galectin-3 is a lectin which
binds to b-galactosidase and displays three distinct
structural domains: an NH2-phosphorylation site, a
collagen repeating part and a terminal COOH
domain for binding carbohydrates. Galectin-3 has a
role of paramount importance in embryonic growth
and development, apoptosis, cellular differentiation
and proliferation, and modulation of the
immunological system. It is expressed by
macrophages, eosinophils, and neutrophils and
mastocytes. In addition, it is seen in gastrointestinal
and respiratory epithelium, kidneys and sensory
neurons [131].
Tissue remodelling after neural or heart ischemia is



characterized by increased expression of galectin-3
[132]. Recent research suggests that galectin-3 is a
pro-angiogenic factor promoting the action of VEGF
and b-FGF [133]. Dos Santos et al. (2017) have
indicated that galectin-3 in concert with hypoxic
conditions stimulates new blood vessel formation
via activation of the JAG1/Notch-1 molecular
pathway [134]. Also, Etulain et al. (2014) have
demonstrated that Galectin-1, 3 and 8 exert their
pro-angiogenic role via VEGF release from human
platelets promoting in vitro tubular formation and
endothelial cell proliferation [135].
Interestingly, migration of type M2 cancer
macrophages is taking place according to a
galectin-3 gradient and increased expression of this
protein is correlated with malignant angiogenesis,
tumour growth and aggressiveness [136]. Research
conducted in a melanoma cell line has indicated
that in transforming growth factor beta 1 (TGFβ1)
activated macrophages, tumoral angiogenesis is
impaired by inhibition of Galectin-3 pathway [137].
At the present time, galectin-3 explains progression
in breast, prostate and pancreatic cancers,
melanoma, follicular thyroid tumours and
neuroblastoma [138, 139, 140, 141, 142, 143]. Also,
in oral squamous cell carcinoma, galectin-3 in
parallel with another lectin named galectin-1,
promotes angiogenesis, cell proliferation and
survival [144].
Park et al. (2015) have shown that in cultures of
osteosarcoma cells, inhibition of galectin-3 is
followed by down-regulation of VEGF, IL-8, IL-6,
phospho-Stat3, MMP2/9 and MCP-1 as well as an
inhibition of several molecular pathways such as
Wnt/beta-catenin, FAK, ERK1/2, PI3K/AKT, Src and
Lyn. All these are translated into a significant
decrease in cell migration and invasiveness [145].
In Her-2 negative breast cancer cells, galectin-3 in
concert with Annexin-A 2 modulates the epidermal
growth factor receptor pathway which promotes
cancer development [146]. In breast tumour
development, hypoxia significantly increases
production of galectin-3 which seems to be
responsible for an aggressive phenotype while in
concert with senescent cell-derived growth factors,
galectin-3 induces colorectal cancer cells growth
[147, 148].

l. Advanced Glycation End Products
(AGEs)/ Receptors for Advanced
Glycation End-products (RAGEs)
Hoffmann et al. (2002) have observed that in the
eye, Advanced Glycation End Products (AGEs) not
only that increase in newly formed blood vessels
but also promote proliferation of Müller cells, retinal
pigment epithelial cells, and choroidal endothelial
cells [149]. AGEs are proteins or lipids modified by
non-enzymatic glycation and oxidation processes.
These appear in diabetic chronic hyperglycemia due
to oxidative stress. AGEs act upon specific receptors
named receptors for advanced glycation end
products (RAGEs). These are seen in monocytes and
macrophages, smooth muscle fibers, lymphocytes

and endothelial cells [150]. AGEs–RAGEs
interaction, triggered by the activation of an
inflammatory process potentiated by NF-kB
stimulates the accumulation of extra-cellular matrix
accelerating the formation of atherosclerotic
plaques and cardiac fibrosis [151]. Recently
published studies have revealed that suppression
of RAGE improves the angiogenic response to
ischemia. The authors explain the observed effect
by a significant increase in VEGF [152].
Interestingly, this VEGF related mechanism has also
been described in human synoviocytes [153].
Recent studies suggest that RAGEs could be
involved in carcinogenesis by modulating the
VEGFR2 and increasing vascularization in renal cell
cancer patients. RAGEs also correlate with a
reduced survival as well as decreased metastasis-
free evolution. All these suggest that RAGEs could
be a prognostic marker in patients with renal cell
carcinoma [154]. Additional experimental studies
have revealed that interaction AGEs-RAGEs in
glioma-associated microglia promotes angiogenesis
[153].

m. HMGB1
The HMGB1 protein acts upon several receptors
TLR4 (Toll-like receptor 4), RAGE (receptors for
advanced glycation end-products), CD24 and TIM-3
and modulates replication, transcription,
recombination, and repair of DNA [155, 156]. In
vitro studies have shown that HMGB1 promotes
endothelial cell migration and sprouting of newly
formed blood vessels in a dose-dependent manner
[157]. HMGB1 initiates expression of Ang-2 and
angiogenesis in skeletal muscle in response to
tissue hypoxia [158]. HMGB1 interacts with RAGEs
and stimulates the production of pro-angiogenic
and pro-inflammatory factors [159].
Also, as results of its interaction with RAGEs,
HMGB1 facilitates the pro-tumoral action of type
2 macrophage phenotype induced by IL4/Il-13,
including angiogenesis [160]. After intra-cerebral
haemorrhage, HMGB1 acts also upon RAGEs to
promote angiogenesis via up-regulation of VEGF
[161]. Studies performed in a murine model of
rheumatoid arthritis have indicated HMGB1 would
exert its pro-angiogenic effect in synovium via
stimulation of HIF-1α. In this context, therapy with
anti-HMB1 antibody would prevent the
development of new blood vessels as well as
synovial inflammation while inducing a significant
decrease in HIF-1α [162].
Interestingly, in the cancer setting, HMGB1
interacts with mitogen-activated protein kinase
(MAPK)-NF-kB and mTOR molecular pathways but
it seems that HMGB1 has a dual effect [155, 163].
On one side it stimulates cancer-associated
angiogenesis while promoting the anti-neoplastic
effects of T lymphocytes [164, 165, 166]. In acute
myeloid leukaemia, HMGB1 promotes malignant
development and progression via increased VEGF
secretion which is dependent on the functionality of
Tim-3 immune receptor [167].



n. Leptin
Leptin is a factor or an “adipokine” secreted by the
adipose tissue which acts at the central nervous
level to regulate satiety and appetite. It also
interferes with endothelial dysfunction which is a
risk factor for atherosclerosis [168]. Leptin levels
correlate with adipose tissue size and body weight
modulating bone physiology, immunological
function and reproduction. More importantly, leptin
induces the formation of new blood vessels [169].
Recent research suggests that leptin levels promote
proliferation and differentiation of angiogenic
endothelial cells in vitro and in vivo [170]. Leptin
modulates the process of angiogenesis in skeletal
muscles acting as a paracrine factor via platelet-
derived growth factor receptor α (PDGFR α) and
platelet-derived growth factor receptor β (PDGFR β)
positive endothelial cells [171].
Also, leptin seems to have a significant role in the
embryological development of the cardiovascular
system. The hypoplastic left heart syndrome is
characterized by leptin dysregulation. Since leptin
has a pro-angiogenic effect, recent studies suggest
that high levels of leptin recorded in subjects with
hypoplastic left syndrome might be a natural
attempt at correcting morphological abnormalities
of the cardiovascular system [172]. Leptin
promotes skin wound healing. Experimental studies
conducted in a mouse model have indicated that
topically administered leptin acts upon leptin
receptor located in the skin to facilitate the
differentiation and functionality of keratinocytes
and local angiogenesis which would promote wound
healing [173]. Moreover, leptin is capable of
promoting expression in various tissues of a wide
range of pro-angiogenic factors including the most
powerful pro-angiogenic mediator, VEGF and its
receptor VEGFR2. It also promotes the synthesis of
IL1, Notch, MMPs, TIMP and integrins [174].
Leptin has been linked to the development of breast
cancer [175]. Interestingly, the leptin receptor and
estrogen receptor are co-expressed in breast cancer
suggesting that leptin may play a significant role
in the development of estrogen-dependent breast
cancer [176]. A clinical study conducted in a cohort
of patients with colorectal carcinoma has found that
almost 80% of cases are characterized by the
presence of leptin receptors in the lesion. This
correlates positively with cancer-related
angiogenesis and cellular proliferation [177]. The
authors suggest that leptin profile could be used
to select those patients which are at high risk of
developing an aggressive form of colorectal cancer.
Sobrinho Santos et al. (2017) have demonstrated in
an animal model of oral squamous cell carcinoma
that the levels of leptin and its receptor are
increased in parallel with HIF-1. However,
administration of leptin induces a significant
increase in MMP9 and 2, E-cadherin and mir-10
[178]. All of these are known to promote
angiogenesis and tumour development.

o. Leucine-Rich Alpha-2-Glycoprotein 1

(LRG1)
Leucine-rich alpha-2-glycoprotein 1 (LRG1) is
expressed during the differentiation of granulocytes
and it is detected in human neutrophils and in their
precursor cells, but not in peripheral mononuclear
cells. In patients with non-small cell lung cancer, an
increased level of LRG1 was reported in plasma and
urine [179, 180]. Increased LRG1 expression is also
observed in inflammatory bowel disease correlated
with disease activity [181]. LRG1 stimulates
angiogenesis via the TGF-b pathway and could have
a significant role in cardiac remodelling preventing
or attenuating the hemodynamic effects of heart
failure [182]. Studies conducted in an animal model
have revealed that LRG1 is co-expressed in retinal
vasculature along with transforming growth factor-
b1 (TGF-b1). In this context, LGR1 induces cellular
proliferation and angiogenesis. It seems that this
molecular pathway is switched on by the binding of
LRG1 on endoglin which is the TGF-b1 receptor. This
results in activation of Smad1/5/8 which ultimately
results in new blood vessels formation. Moreover,
administration of an LRG1 antibody results in the
inhibition of angiogenesis. Also, subjects without
LRG1 display a significant reduction in pathological
retinal angiogenesis [183].

p. NADPH Oxidase1
NADPH oxidase (Nox) family protein consists of
seven isoforms (Nox1–5, DUOX1–2) which transport
oxygen through the cellular membrane. This leads
ultimately to a significant reduction in superoxide
oxygen. The isoenzyme Nox 1 is expressed by the
epithelial cells, pericytes, osteoclasts, smooth
muscle cells and endothelial cells [184]. However,
in the resting endothelial cells, Nox 1 is expressed
at a low level. Remarkably, Nox 1 level increases
significantly after the beginning of angiogenesis.
Recent studies have mentioned that the synthesis
and release of pro-angiogenic factors such as
angiopoietin 1 and VEGF have been shown to be
dependent on Nox 1 and Nox2. VEGF, as well as its
receptors, VEGFR1 and VEGFR2, are over-expressed
in the presence of Nox-1 in both tumour tissues
and cell cultures [185, 186]. Vara et al. (2018) have
demonstrated that 2-Deoxyribose-1-Phosphate
activates NADPH Oxidase 2 which subsequently
stimulates angiogenesis via activation of nuclear
factor kappa B (NF-κB) [187].
In-vitro studies have shown that Nox1 modulates
apoptosis and morphogenesis of sinusoidal
endothelial cells suggests that it might have a
significant role in the process of vascular
development [184]). Previous experiments have
revealed that Nox1 is involved in RAS oncogenic
transformation by promoting over-expression of
VEGF. Small interference NOX1 RNA inhibits the
extracellular signal-regulated kinase (ERK)
dependent activation of VEGF promoter (Sp1).
Overall, there is a significant decrease in
angiogenesis. These effects have been observed in
both K-ras transformed kidney cells as well as in
human colorectal cancer cells [188]. In a culture of
K-Ras-activated kidney cells, transfection of Nox1



small interference RNA (siRNA) decreases
angiogenesis and cell migration by blocking NF-kB
dependent matrix metalloproteinase-9 (MMP-9)
[189]. Therefore, it is accepted that Nox1 promotes
directly the process of angiogenesis. Moreover,
increased expression of Nox1 has been reported
in clinical cases of colorectal cancer and a recent
study has reported that specific inhibitors for Nox4
and Nox2 prevent the development of vascular
tumours [184, 186].

q. Urotensin II (UII)
Ross et al. (2010) reported that urotensin II(UII)
represents a cyclic peptide with a similar structure
as somatostatin which binds a special class of G-
coupled receptors namely GPR14 or urotensin
receptor [190]. Urotensin II (UII) is expressed in the
cardiovascular and respiratory, renal and central
nervous system [191]. Recent scientific data
suggest that urotensin II (UII) maintains endothelial
cell homeostasis and functionality. At this level, it
activates via p38 the extracellular signal-regulated
kinase as well as mitogen-activated protein kinase
molecular pathways to synthesize IL-8 stimulating
angiogenesis. Also, the activation of these
molecular pathways would also result in cellular
proliferation and endothelial cell survival [192].
However, subsequent to its binding to GPR14
receptors, UII activates Nox2 and generates
reactive oxygen species (ROS). Then a significant
increase in HIF-1a is recorded which further
stimulates reactive oxygen species (ROS)
production and a major increase in new blood
vessels formation via activation of Nox 2 [193].
Molecular evaluation of multiform glioblastoma has
indicated that this tumour overexpresses urotensin
II (UII) and its receptor. Subsequent to UII
interaction with its receptors a molecular chain of
events culminating with glioma cell migration and
adhesion, is activated. This urotensinergic system,
which seems to include the G13/Rho/rho kinase
pathway and partially the Gi/o/PI3K molecular
complex, is noted in glioma tissue resected from
patients as well as biopsy tissue and culture cell
lines [194]. In breast cancer, urotensin II (UII)
promotes cellular proliferation as well as cancer-
related angiogenesis. Moreover, the Thr21Met
polymorphism in of the urotensin II (UII) gene, the
UTS2 identifies a group of patients at risk of
developing breast cancer [195].

r. Orai-1
The gene labelled Orai-1 encodes a calcium-
membrane channel subunit namely CRAC
(Ca2+release-activated Ca2+) which is activated
when calcium deposits are low. These types of
calcium channels represent the major route for the
influx of calcium in T lymphocytes, modulating their
immunological response and subsequently
activating the transcription factor NFAT [196, 197].

It was claimed by some authors that increased
activation of Orai-1 may represent the molecular
mechanism which explains the abnormal control of
intracellular calcium described in essential
hypertension [198]. The Orai-1 channels enable the
cells of the retinal pigment epithelium to produce
repetitive and/or sustained Ca²+ signals necessary
for various important functions such as
transepithelial transport of various substances,
growth factor secretion and phagocytosis [199]. In
addition, Orai-1 could have a significant
etiopathogenic role in diabetic erectile dysfunction
[200].
Smooth muscle cells express Orai-1. However, a
congenital deficiency of Orai-1 gene leads to
myopathies and chronic lung disease due to
bronchial smooth muscle damage. As calcium input
is essential in tooth development an Orai-1
deficiency such as in anhidrotic ectodermal
dysplasia is associated with anomalies of the
enamel development. All of these are described
within the setting of reduced T lymphocyte
activation and cytokine production. However, the
vascular structures in these patients are apparently
normal which suggests that Orai-1 is not essential
for angiogenesis [201]. Anyway, these results have
been contradicted by other studies that have found
out that Orai-1 is important in the formation of
endothelial tubules, but its functionality is
dependent on a prior VEGF-activated Ca2+ entry
[202]. Moccia et al. (2013) have shown that in early
cancer angiogenesis, Orai-1has a positive role
facilitating through the respective channel the
calcium influx which stimulates the mobilization of
endothelial cells and subsequent angiogenesis
[203].
In conclusion, modulation of angiogenesis is
possible and new factors have shown promising
results in experiments conducted in vitro and in
vivo. Often times the authors record puzzling effects
such as the anti-tumoral effect of combination
Vinorelbine and an anti-angiogenic agent such as
Endostar in subjects with non-small cell lung
carcinoma in which cancer-associated angiogenesis
was not affected [35]. Other studies have revealed
important physio-pathological mechanisms which
must be further investigated such as the role of
Tie-2 in impermeabilization of blood vessels [49].
Other studies have shown that angiogenesis is
important in a variety of pathological conditions
and theoretically new pharmacological agents could
be developed to prevent or treat skeletal
malformations, pre-term labour, diabetes and many
others. While some of the factors presented above
may be acting in parallel, their molecular
mechanisms of co-activation and feedback are not
yet fully understood. Therefore, more experiments
are needed in order to develop efficient
pharmacological agents that could effectively
modulate angiogenesis in various pathological
settings.
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